
Silicon as an anisotropic mechanical material - a tutorial

Ville Kaajakari

This tutorial covers the calculation of silicon Young’s modulus and Poisson’s ratio from elastic
constants in any crystal orientation. The algebra is the same for any elastic material with cubic
symmetry but I am mostly interested in silicon as I have used it to make micromechanical compo-
nents. The tutorial assumes knowledge of matrix algebra and some elementary mechanics concepts
such as stress and strain. The material in this tutorial is mainly based on the paper by Wortman and
Evans [1] with some concepts not familiar for a typical engineer briefly explained.

Figure 1 below shows how Young’s modulus Y is defined: the bar is stretched in the x-direction
while simultaneously it is allowed to move freely in y- and z-directions. The Young’s modulus is
then defined as the ratio of stress to strain in the direction of the stretching (Y = T11/ε11). The Pois-
son’s ratio is defined as ratio of length extension to sideways contraction (ν =−ε22/ε11). Different
directions are referred with numbers and letters interchangeably with numbers 1, 2, and 3 used to
indicate x, y, and z axes respectively.
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Figure 1. Definition of Young’s modulus Y . This tutorial uses numbers 1, 2, and 3 to indicate x, y,
and z axes respectively.

For an anisotropic material such as silicon the Young’s modulus depends on which crystal di-
rection the material is being stretched. Looking at Figure 2 this should be no surprise as the silicon
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crystal is highly structured. Figure 2 is also a quick introduction to the crystallographic notation:
Different directions are indicated with respect to crystal basis using Miller indexes. In cubic crystal
such as silicon the [100], [010] and [001]-directions can be chosen to coincide with x, y, and z-axes.
However, this may not be true for crystal with different symmetry. The Miller indexes can be thought
as vectors. For example [210] would mean two in [100]-direction and one in [010]-direction. Thus
all other directions can be obtained with combination of indexes with [101]-direction shown as an
example.

[100]

[010]

[001] [101]

(100) plane

Figure 2. Silicon crystal structure: Different crystal orientations are indicated with Miller indexes
with [100] coinciding with x-axis. Also shown is (100)-plane (that is plane orthogonal to [100]
direction) and crystal unit cell (red box).

To account for anisotropy tensor formalism is required. The general relationship between stress
and strain is

Ti j =
3

∑
k=1

3

∑
l=1

Ci jklεkl, (1)

where Ci jkl is the second order stiffness tensor, εkl is strain and Ti j is stress. The subscripts i j refer
to axes: For example T11 is stress in x-direction and T12 is shear stress between x-and y-axis.

For convenience short hand matrix notation can be used. The notation takes use of symmetry
relationships ε12 = ε21, ε13 = ε31, and ε23 = ε32 between shear stresses to write 11 → 1, 22 → 2,
33 → 3, 32 → 4, 31 → 5, and 21 → 6. For example C1132 then becomes C14 and ε32 is simply ε4.
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Table 1. Silicon Young’s modulus in different crystalline directions
Direction Expression Value [GPa]
[100] C11−2 C12

C11+C12
C12 130

[110] 4 (C2
11+C12C11−2C2

12)C44

2C44C11+C2
11+C12C11−2C2

12
170

[111] 3C44(C11+2C12)
C11+2C12+C44

189

With this notation Equation (1) can be rewritten as
T1
T2
T3
T4
T5
T6

 =


C11 C12 C13 C14 C15 C16
C21 C22 C23 C24 C25 C26
C31 C32 C33 C34 C35 C36
C41 C42 C43 C44 C45 C46
C51 C52 C53 C54 C55 C56
C61 C62 C63 C64 C65 C66




ε1
ε2
ε3
ε4
ε5
ε6

 . (2)

The main advantage of short hand notation is that we have gotten rid of the nasty tensor double sum
in Equation (1) and many calculations can be solved with matrix algebra. For silicon the stiffness
matrix C in [100]-crystal axes is

C =


1.66 0.64 0.64 0 0 0
0.64 1.66 0.64 0 0 0
0.64 0.64 1.66 0 0 0

0 0 0 0.80 0 0
0 0 0 0 0.80 0
0 0 0 0 0 0.80

 , (3)

where all values are in units of 1011 Pa. Equation (2) allows direct calculation of the Young’s
modulus. To obtain Young’s modulus in [100] direction (remember, that is also the x-direction), set
all other stresses to zero and solve for Y[100] = T1/ε1. This gives

Y[100] = C11−2
C12

C11 +C12
C12 = 130 Gpa. (4)

The Poisson’s ratio can similarly be obtained as

ν[100] =
C12

C11 +C12
= 0.28. (5)

The expressions and values for Young’s modulus to [110]- and [111]-direction are given in Table 1.
Unfortunately as Table 1 illustrates, calculations can become complicated very quickly and

computerized method can be desirable. Since the stiffness matrix is known, the Young’s modulus
can be numerically computed by taking inverse of C. This is called compliance matrix S = C−1.
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The compliance matrix can be used to calculate strains due to applied stress in desired directions.
If stress is applied x-direction, the stresses other than T1 are zero. From ε = ST Young’s modulus is
then simply (Why?)

Y =
T1

ε1
= 1/S11. (6)

Similarly, Poisson’s ratio is

νi j =−
ε j

εi
=−

Si j

Sii
. (7)

Compliance matrix is useful in other situations too. Figure 3 shows 2D stretching of a plate. In this
case T1 = T2 and the other stresses are zero. This gives Y2D = T1/ε1 = 181 GPa. Interestingly this
does not depend on axis orientation.

1T

1T

2T2T

Figure 3. 2D stretching of a silicon plate.

The Young’s modulus in any direction can be obtained by calculating the stiffness matrix in
rotated coordinates. For example, to obtain Young’s modulus in [110]-direction, do a 45◦ rotation
around the [001]-axis. Once stiffness matrix is known in the new coordinates, one can follow the
calculation algorithm above. Example of axis rotation is shown in Figure 4. In calculating the
rotated stiffness matrix, it has the be remembered that C is really based on a second-order tensor
and that tensor rotation is slightly more complicated than for matrix rotation. The rotated C′ can be
found in literature [1] but due to complex algebra, I find it easier to calculate it numerically. The
rotated C′ is obtained from

C′
i jkl =

3

∑
p=1

3

∑
q=1

3

∑
r=1

3

∑
s=1

QpiQq jQrkQslCpqrs, (8)

where Q is the rotation matrix. Tedious for hand calculation but a breeze for a computer.
This is all that is needed to calculate silicon Young’s modulus and Poisson’s ratio. As an exam-

ple, they are shown in (100)-plane in Figure 5. You may obtain the Matlab-script used in calculating
the images from
http://www.kaajakari.net/ ville/research/tutorials/Yangle.m. With the script you should be able to
calculate the Young’s modulus in other planes. The (111)-plane gives an interesting result of con-
stant Young’s modulus and Poisson’s ratio. This makes (111) wafers an interesting material for
micromachining.
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Figure 4. Axis rotation using rotation matrix Q. The new axes is obtained with x′ = Qx
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Figure 5. Calculated silicon Young’s modulus and Poisson’s ratio in (100)-plane
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