
MEMS Tutorial:
Mechanical noise in microelectromechanical systems

Mircomachining has enabled manufacturing of cheap and reliable minituarized sensors. For variety of
reasons, it would be interesting to further scale down the devices. For example, it may be of interest to obtain
higher resonance frequency or simply to lower the cost by incorporating more devices on a silicon wafer.
However, the smaller devices the lower is the signal to noise ratio [1, 2]. Intuitively this may be understood
by noting that ratio of mechanical to thermal energy E/kT goes down as the device mass is reduced. This
tutorial covers the derivation and analysis of noise in mechanical devices.

Derivation of Johnson-Nyguist noise
It may seem strange to start the discussion of mechanical noise with the derivation of Johnson-Nyquist noise
as mechanical vibrations and electron movement seem to have little in common. However, as the origin
of noise in both cases is dissipation, it should no surprise that the resulting expressions for the noise are
very similar. Thus, reviewing Johnson-Nyguist noise serves to reassure the reader who probably is already
familiar with thermal noise in resistors: once we have derived the correct expression for the resistor noise
voltage generator (u2

n = 4kT R), a similar derivation for the case mechanical dissipation will be easier to
accept. The derivation done here is a bit mathematical. To those who enjoy good argumentation without too
many equations, you may want to obtain a copy of the original article by Nyguist [3] as it is still one of the
most readable derivations for the resistor noise.

We’ll begin by looking at the series RLC resonator shown in Figure 1. Associated with the resistor is
some unknown thermal noise generator un. Due to this voltage there is energy stored in the inductor and
capacitor. We also note that the circuit is fully described with two variables: current and voltage (or magnetic
and electric). From the equipartititon theorem we know that there is thermal energy 1

2 kT associated with the
every variable. We now have a road map for the derivation: calculate the energy stored in the inductor due to
voltage un and equate this with 1

2 kT .
The current through the RLC network due to noise voltage vn is

in =
un

R+ sL+1/sC
, (1)

where s = jω as usual. The magnitude of the mean square current is

i2n =
u2

n

R2 +(ωL−1/ωC)2 . (2)

We’ll rewrite Equation (2) in terms of resonance frequency ω0 = 1/
√

LC and quality factor Q = ω0L/R as

i2n =
1

R2
u2

n

1+Q2(ω/ω0−ω0/ω)2 . (3)
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Figure 1. RLC resonator with noise generator vn

Copyright Ville Kaajakari (ville@kaajakari.net)
Homepage: http://www.kaajakari.net
Tutorials: http://www.kaajakari.net/~ville/research/tutorials/tutorials.shtml

1

http://www.kaajakari.net
http://www.kaajakari.net/~ville/research/tutorials/tutorials.shtml


The energy stored in the inductor in a frequency interval is dE = 1
2 Li2nd f . Thus, the total energy stored in the

inductor is
E =

1
2

L
∫

∞

0
i2nd f . (4)

Substituting Equation (3) into Equation (4) gives

E =
1

4πR

∫
∞

0

u2
nQd( f / f0)

1+Q2( f / f0− f0/ f )2 . (5)

In order to evaluate the integral in Equation (5), we assume that the quality factor is high so that essentially
all the energy is confined near the resonance. We can thus assume that within this small frequency range the
voltage generator is approximately constant and write u2

n ≈ u2
n( f0) giving

E =
u2

n( f0)
4πR

∫
∞

0

Qd( f / f0)
1+Q2( f / f0− f0/ f )2 . (6)

Evaluation of the integral is obviously left for the reader as an exercise 1. The result is

E =
u2

n( f0)
8R

. (7)

Equating (7) with the thermal energy 1
2 kT gives

u2
n( f0) = 4kT R. (8)

Since the result does not depend on frequency, it is valid for all frequencies and we have

u2
n = 4kT R. (9)

Derivation of mechanical noise
We’ll now proceed to the problem of noise in a mechanical resonator shown in Figure 2. We note that the
system is fully described by two variables: velocity and position (or kinetic and potential energy). Associated
with damping, there is some force noise generator Fn for which we wish to derive an expression.

m

k

m

k γ

Figure 2. Mechanical resonator represented with mass M, spring K, and dash pot damper γ.

The equation of motion for the system is

M
∂2x
∂t2 + γ

∂x
∂t

+Kx = Fn. (10)

1Hint: Start by writing f
f0

= ex and proceed from there.
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We may write Equation (10) in terms of velocity v by noting that v = ∂x
∂t = sx giving

sMv+ γv+
K
s

v = Fn. (11)

Thus, the mean square velocity due to noise generator Fn is

v2
n =

F2
n

γ2 +(ωM−K/ω)2 . (12)

Equation (12) can be rewritten in terms of resonance frequency ω0 =
√

K/M and quality factor Q = ω0M/γ

as

v2
n =

1
γ2

F2
n

1+Q2(ω/ω0−ω0/ω)2 . (13)

The kinetic energy stored in the resonator is

E =
1
2

mv2
n =

1
4πγ

∫
∞

0

F2
n Qd( f / f0)

1+Q2( f / f0− f0/ f )2 , (14)

which is the same as Equation (5). Thus, the force noise generator is

F2
n = 4kT γ. (15)

Mechanical noise in electrical equivalent circuit
Another way to derive force noise generator is to use equivalent circuit analysis. We start by substituting
∂x
∂t = i into Equation (10) giving

M
∂i
∂t

+ γi+K
∫

idt = f (t). (16)

Next, defining f = u we rewrite Equation (16) as

M
∂i
∂t

+ γi+K
∫

idt = u. (17)

By defining motional resistance, motional capacitance, and motional inductance as

Rm = γ =
√

KM/Q,
Cm = 1/K, and
Lm = M

(18)

Equation (17) becomes

Lm
∂i
∂t

+Rmi+
1

Cm

∫
idt = u. (19)

With Laplace notation this is

sLmi+Rmi+
1

sCm
i = u, (20)

which is same as Equation (1) for series RLC circuit. The noise voltage is

u2
n = 4kT Rm. (21)

Using the definitions f = u and Rm = γ, the mechanical noise is then

f 2
n = 4kT γ, (22)

which is the same as Equation (15).
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Noise in accelerometers
We’ll exemplify what we have learned by looking at noise in a micromechanical accelerometer. A structure
of a typical MEMS accelerometer is shown in Figure 3. The device dimensions are 1 mm·1 mm·0.2 mm and
the mass and spring constant are 4.4 · 10−7 kg and 0.25 N/m respectively. The noise spectrum is obtained
from Equations (10) and (15) as

x2
n =

4kT γ

γ2ω2 +(K−Mω2)2 . (23)

The rms noise < xn >=
√

x2
n is plotted in Figure 4 for quality factor values of Q = 1, Q = 2, and Q = 3.
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Figure 3. A schematic of MEMS accelerometer.
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Figure 4. The calculated accelerometer noise spectrum.

The accelerometers are used to detect motion below the resonance frequency where

x2
n ≈

4kT γ

K2 (24)

and the RMS noise is

< xn >≈
√

4kT γ

K
. (25)
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The force due to acceleration is F = ma and below the resonance the movement of the proof mass is

x≈ ma
K

. (26)

The accelerometer noise is then

< an >≈

√
4kT ω0

mQ
. (27)

For example, Equation (27) gives < an >= 0.38 µg/
√

Hz for our example accelerometer Q = 2. Looking
at Equation (27), it is observed that the signal to noise ratio can be increased by i. increasing the mass,
ii. increasing the quality factor, and iii. reducing the bandwidth. The quality factor, however, cannot be
increased too much, at least not without feedback control, as high Q will result in excessive ringing at the
resonance frequency. As the operational bandwidth is usually fixed, the designer is left with increasing the
proof mass as the only method to increase signal to noise ratio. This may partially explain why there are so
few “nanomechanical” accelerometers on the market 2.

The theory can be put into perspective by comparing two commercial accelerometers. A bulk micro-
machined accelerometer (SCA610 from VTI) has a noise of < an >= 30 µg/

√
Hz, while a surface mi-

cromachined accelerometer (ADXL150 from Analog Devices) that has much smaller mass has noise of
< an >= 1 mg/

√
Hz. While these numbers include noise from circuitry, they do illustrate the need for

large mass to obtain low noise.
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