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Micromachined accelerometers

• The “second” MEMS product (first was pressure sensors).
• Applications:

– Crash detectors for air bag deployment. Over 6,000 lives saved in US.
– Low-G sensors are used for active suspensions and vehicle stabilization 

controls. 
– Motion based user interfaces (e.g. game consoles, cell phones)
– Step counters, running speed and distance.
– Digital cameras to determine the picture orientation.
– Free fall detection to protect laptop hard drives



Principle of operation

• A proof mass is 
attached to frame with 
a spring.

• When the frame is 
accelerated, the proof 
mass follows the frame 
motion with a lag. 
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Frequency response
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Equation of motion:

The proof mass displacement 
relative to the frame is proportional 
to the acceleration! 



Amplitude of the response 
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Changing the resonant frequency

•Lowering ω0 improves low 
frequency response but does 
not affect high frequency 
response.

•Overall, lowering ω0 helps.
•Taken to extreme ω0 = 1-2 Hz! 
(Macroscopic seismometers).

•For MEMS typically ω0 > 50 HZ.
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Scaling laws for accelerometers

What happens when all dimensions 
are reduced 10x? 
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(Analog devices  accelerometers measure 0.1 Å displacements!)
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Critical damping or over damping preferred for clean response



Sensing principles

• Piezoresistive
– Stress sensitive resistors integrated in the springs
– Robust
– Noisy, high power, and large temperature dependency

• Capacitive
– Direct measurement of displacement
– Low power, low noise
– Small capacitance measurement is difficult

• Piezoelectric
– Self generating
– Signal proportional to change in stress – no dc signal!

• Magnetic
• Optical
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Noise equivalent acceleration
(rms acceleration)
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Total rms noise depends only on 
mass and resonant frequency!
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ADXL50 Accelerometer
• +/-50G
• Polysilicon MEMS & 

BiCMOS
• 3x3mm die
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