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Nonlinear Mechanical Effects in Silicon
Longitudinal Mode Beam Resonators

Ville Kaajakari, Tomi Mattila, Antti Lipsanen, and Aarne Oja

Abstract— The fundamental nonlinear mechanical effects in
micromachined single-crystal silicon resonators are investigated.
Longitudinal mode beam resonators are chosen for the analysis
due to their simple geometry and high quality factor (Q >
100 000). Analytical model for the resonator is developed in terms
of nonlinear engineering Young’s modulus that incorporates both
geometrical and material effects. For comparison with the theory,
beam resonators were fabricated in two different crystalline
directions. The measured nonlinearity is larger for beams in [110]
direction than for beams in [100] direction in agreement with the
theoretical prediction. The results provide a quantitative value
for the appearance of the material-induced nonlinear effects in
single-crystal silicon microresonators.

Index Terms— Bulk acoustic wave devices, Hysteresis, Mi-
croresonators, Nonlinear oscillators, Nonlinearities, Resonators

I. I NTRODUCTION

Micromechanical oscillators and filters are a potential al-
ternative to the size consuming and costly macroscopic com-
ponents such as quartz resonators. Silicon resonators are seen
as an especially interesting technology due to their compact
size and suitability for integration with IC technologies [1].
However, the small size of micromechanical components in
comparison to their macroscopic counter parts unavoidably
results in a smaller power handling capacity. Thus, for optimal
performance, the devices may need to be operated close to the
material limits for linear operation. Quantifying these limits is
therefore of fundamental significance.

Comparison of different microresonator types has shown
that bulk acoustic wave based resonators are capable of orders-
of-magnitude higher energy storage density than flexural res-
onators [2]. Moreover, the measured nonlinear vibrations have
been close to the estimated material limits. However, no
experimental evidence on the material nonlinearity in silicon
resonators have been presented.

In this paper, the nonlinear effects in silicon resonators
are quantified theoretically and experimentally for single-
crystal silicon longitudinal mode devices. The operation of
the longitudinal mode resonators is based on bulk acoustic
waves; Consequently, the resonators have been shown to offer
high quality factors over 100 000 making them suitable for
low noise oscillators [3]. While different resonator geometries,
plate resonators in particular [4], offer equally high quality
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factor and much higher power handling capacity, the one
dimensional nature of the beam resonators makes them well
suited for the analysis of the fundamental resonator perfor-
mance limits. By measuring resonators oriented in different
crystalline directions, direct evidence on material nonlinearity
is obtained.

The paper is organized as follows: First, in Section II, the
large deformation theory is used to calculate nonlinear silicon
Young’s modulus. Due to material effects, the nonlinearityis
found to be larger for beams in[110] direction than for beams
in [100] direction. In Section III, a lumped equivalent model
that includes the nonlinear Young’s modulus is developed
for the longitudinal mode beam resonator. In Section IV, the
theory of nonlinear forced vibrations is applied to the lumped
beam resonator model. An analytical expression is given to
estimate the resonator vibration amplitude maximum limited
by hysteresis. In Section V, the lumped model is compared
to simulations based on a continuum model and excellent
agreement is obtained. The paper is concluded with Section VI
where experimental results on measured nonlinearities are
given. The predicted difference between the[110] and[100] di-
rection is verified. In general, the results provide a quantitative
value for the onset of the material-induced nonlinear effects in
single-crystal silicon microresonators. This is of fundamental
importance in determining the microresonator performance.

II. SILICON NONLINEARITY

Single-crystal silicon is often regarded as a linear material
until the fracture point. However, a high quality factor makes
microresonators susceptible to nonlinearities and even the
small silicon material nonlinearity can become significant. In
addition to the material nonlinearity, large deformationsalso
result in geometrical nonlinear effects. As an example, the
beam cross sectional area decreases in response to stretching
force and the Cauchy stressσ = F/A for a given force
becomes higher. In this paper, the geometrical and material
nonlinear effects are incorporated into nonlinear Young’s
modulus that is calculated using the large deformation theory
and the published values for the silicon third-order stiffness
tensor [5].

The nonlinear engineering Young’s modulus is defined as

Y =
T

S
= Y0(1 + Y1S + Y2S

2), (1)

whereT is the force divided by the initial undeformed area
(first Piola-Kirchoff or engineering stress),S = ∂u/∂x is
the displacement gradient with respect to undeformed coor-
dinates (engineering strain), andY1 andY2 are the first- and
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TABLE I

CALCULATED NONLINEAR ENGINEERING YOUNG’ S MODULUS

Y0[GPa] Y1 Y2

Beam ([100]) 130 0.65 −4.6
Beam ([110]) 170 −2.6 −8.1

second-order corrections to the linear Young’s modulusY0,
respectively. To calculate the linear and nonlinear terms in
Equation (1), we start from the Cauchy stress due to a finite
deformation. Including the geometrical (area and volume)
changes and material stiffness effects, the Cauchy stress is

σij(X) =
ρX

ρa

∂Xi

∂ak

∂Xj

∂ak

(cijklηkl + cijklmnηklηmn), (2)

whereX is the particle coordinate at the finite deformation,a
is the undeformed state,ρX andρa are the deformed and unde-
formed densities,cijlk andcijklmn are the second- and third-
order stiffness tensors, andηkl is the Lagrangian strain [6]. For
the silicon stiffness tensor, experimentally obtained values (in
units of GPa)c11 = 165.64, c12 = 63.94, c44 = 79.51, c111 =
−795, c112 = −445, c123 = −75, c144 = 15, c155 = −310,
c456 = −86 are used [5]. The third-order elastic coefficients
are sufficient to describe elastic waves in silicon at high stress
levels (9.2 GPa) and the contribution of fourth order elastic
coefficients is negligible [7]. The second-order expansionfor
Young’s modulus (Equation (1)) therefore accurately describes
the silicon nonlinearities in microresonators. This is different
from quartz where the fourth-order elastic coefficients are
significant.

Here, Equation (2) is solved numerically as a function
of applied stress. The Cauchy stress is then related to the
engineering stress, also known as the first Piola-Kirchoff stress
by

Tii =

(

∂Xi

∂ai

)2

σii. (3)

The engineering strain is given by

Sii =
∂Xi

∂ai

− 1. (4)

The nonlinear Young’s modulus is obtained by fitting the
calculated strain and stress given by Equations (2), (3) and(4)
to Equation (1). The obtained values for the Young’s modulus
in [100] and [110] direction are tabulated in Table I with
values in [100] direction agreeing with the published analytical
results in [6]. The contribution of the anharmonic stiffness
tensor cijklmn is found to be significant. Accounting only
for the geometric effects givesY1 = 1.0 and Y2 = 0.50
for the beam extension in both[100] and [110] direction.
This difference between the geometrical and material effects
can be used to experimentally verify the presence of material
effects: If only the geometrical effects were significant, no
difference in nonlinearity would be observed for resonators
in [100] and [110] direction whereas an observed difference
indicates material nonlinearity.

III. N ONLINEAR BEAM RESONATOR MODEL

The longitudinal mode beam resonator used in this study is
shown in Figure 1. The vibration mode is a half wave length
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Fig. 1. Schematic of the longitudinal mode beam resonator and the first
mode shape

longitudinal mode wave, thus, the device is sometimes referred
to a bulk acoustic wave (BAW) resonator [3]. Here a model
for the resonator is developed that incorporates the nonlinear
Young’s modulus calculated in Section II.

The wave equation for a longitudinal displacementu in
beams is

ρA
∂2u

∂t2
=

∂

∂z

(

AY
∂u

∂z

)

, (5)

where,ρ is the beam density,A is the beam cross sectional
area, andY is the nonlinear Young’s modulus that includes the
area and volume changes and the nonlinear material effects [8].
The solution of Equation (5) can be approximated by the linear
mode shape

u(z, t) = x(t) sin πz/2L, (6)

where x is the motion of the beam tip andL is the beam
half length [9], [3]. The linear mode shape approximation is
justified by numerical simulations in Section V. Substituting
Equations (1) and (6) into (5) and integrating over the mode
shape leads to

ρAL
∂2x

∂t2
= −π2

4

AY

L
x

(

1 +
4Y1

3L
x +

3π2Y2

16L2
x2

)

. (7)

The effective mass and the nonlinear spring constants can be
recognized as

m = ρAL
k(x) = k0(1 + k1x + k2x

2)

k0 = π2

4

AY
L

, k1 = 4Y1

3L
andk2 = 3π2Y2

16L2 .

(8)

Thus, the nonlinear vibrations in a longitudinal mode beam
resonator can be modeled as a lumped second order system.
The equation of motion for forced beam vibrations is written
as

mẍ + γẋ + k(x)x = Fω cosωt, (9)

wherex is the motion of beam tip,γ is the damping coeffi-
cient,Fω is the magnitude of the forcing term at frequencyω,
and the mass and spring constant are given by Equation (8).
We also define the natural frequencyω0 =

√

k/m and the
quality factorQ = ω0m/γ.
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IV. N ONLINEAR FORCED VIBRATIONS

The lumped model can be used to analytically characterize
the resonator nonlinearities and to estimate the maximum
vibration amplitude. Following Landau, the solutions to Equa-
tion (9) are searched by the method of successive approxima-
tions by assuming a solution of form [10]

x(t) = x0 + x1 cosωt + x2 cos 2ωt + x3 cos 3ωt + .... (10)

The resonance behavior changes in the presence of nonlinear
terms and the peak frequencyω′

0
is related to the vibration

amplitudex1 by

ω′

0
= ω0(1 + κx2

1
), (11)

where

κ =
3

8
k2 −

5

12
k2

1
. (12)

The time harmonic vibration amplitude near the resonance is
then given by

x1 =
Fω/m

√

(ω′2

0
− ω2)2 + (ωω′

0
/Q)2

. (13)

Equations (11), (12) and (13) show that due to either positive
or negative k1, the peak frequency always shifts to a lower fre-
quency with an increasing vibration amplitudex1. Similarly,
a negativek2 results in the peak frequency shifting to a lower
frequency, but a positivek2 results in a higher peak frequency.
As indicated by Table I and Equation (8), thek2:s are negative
for both crystalline directions. Due to the combinedx1 and
k2 effects, the resonator peak frequency is always expected to
show a shift to a lower frequency.

A useful measure of the maximum vibration amplitude is
obtained by calculating the bifurcation point shown in Fig-
ure 2(a). At higher excitation levels, the amplitude-frequency
relationship is no longer a single valued function and shows
hysteresis as illustrated in Figure 2(b). The vibration amplitude
at the point of bifurcation is

xb =
1

√√
3Q|κ|

. (14)

As indicated in Figure 2(a), the critical vibration amplitude
(or the greatest vibration amplitude) is slightly higher than
the vibration amplitude at the bifurcation point and is given
by

xc =
2

√

3
√

3Q|κ|
. (15)

As Equation (15) shows, increasing the quality factorlowers
the critical vibration amplitudexc as the resonator becomes
more susceptible to nonlinearities.

The energy stored in the resonator at the critical vibration
amplitudexc is

Ec =
1

2
k0x

2

c (16)

and the drive level defined as power dissipated in the resonator
is

Pc =
ω0Ec

Q
. (17)

TABLE II

COMPARISON OF10 MHZ LONGITUDINAL MODE RESONATORS ORIENTED

IN [100] AND [110] DIRECTION

OrientationParameter Symbol
[100] [110]

Units

Resonator height h 10 10 µm
Resonator width w 10 10 µm
Resonator half length L 187 213 µm
Linear spring constant k0 172 196 kN/m

k1 4.7 -15 10
3

k2 -3.9 -3.0 10
8

κ 1.1 2.1 10
8

Mass m 43.6 49.7 pkg
Quality factor Q 1 1 10

5

Critical vibration amplitude xc 270 190 nm
Energy at critical amplitude Em 6.2 3.6 nJ
Power at critical amplitude Pm 3.9 2.3 µW
Maximum strain Smax

c 2.3 1.4 10
−3

Equations (16) and (17) can be used to compare the power
handling capacity of different resonators [2]. Table II shows
the critical vibration amplitudes for 10 MHz longitudinal mode
beam resonators oriented in [100] and [110] direction. The
following is observed:

1) The resonator oriented in [110] direction is about 14%
larger than the resonator in [100] direction reflecting the
larger linear Young’s modulus in [110] direction. Thus,
if one were not to account for the nonlinear material
effects, the larger size of the [110] resonator would be
expected result in a larger power handling capacity.

2) Due to the inclusion of the material effects, the non-
linearity factorκ for the resonator in [110] direction is
almost twice of that in [100] direction. The maximum
vibration amplitudexc is correspondingly about 30%
smaller.

3) The maximum power handling capacity for the resonator
in [110] direction is about half of that in [100] direction.
Thus, perhaps surprisingly, the smaller [100] resonator
has a higher power handling capacity due to smaller
material nonlinearities in comparison to [110] resonator.

The maximum strains at the nonlinear limit can be compared
to the estimated fracture strain of1 ·10−2 for silicon [11]. The
maximum strain in the resonator center at critical vibration
amplitude is

Smax
c =

πxc

2L
. (18)

Thus, as Table II shows, the nonlinearity limit is reached an
order-of-magnitude before the fracture.

V. V ERIFICATION OF RESONATOR MODEL

To verify the lumped model developed in Section III, the
theoretical vibration amplitude given by Equation (13) was
compared to simulations with a distributed model [2]. In the
distributed model, the continuum is approximated with a chain
of four masses and springs. The mass-spring chain model has
been implemented as an electrical-equivalent model in the
Aplac simulation software. Displacement versus frequencyre-
sponses to a forced excitation are simulated using the harmonic
balance analysis [12], [13]. As the harmonic balance analysis
is carried out in the frequency domain, it is computationally
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Fig. 2. At bifurcation point, the vibration amplitude is nota single valued
function leading to frequency hysteresis

efficient for systems that have a high quality factor and are
thus slow to settle in the time domain (transient) analysis.The
convergence of the discretization was verified by repeatingthe
simulations with a model based on eight mass and springs. The
difference was less than 1% validating the used discretization.

Figure 3 shows the simulated vibration mode for the eight
mass-spring chain at the hysteresis limit and the analytical
linear mode shape (sin kx). The relative difference between
the nonlinear simulated beam displacements and the linear
mode shape is less than1 · 10−3 justifying the usage of linear
mode shape in Section III. Figure 4 shows a comparison of the
analytical lumped model and the simulated distributed model
for the 10 MHz longitudinal mode resonator in [100] direction.
Excellent agreement is obtained below the bifurcation point.
As expected for the negativek1 and k2, the peak frequency
shifts to a lower frequency as the vibration amplitude in-
creases. At large vibration amplitudes, the solution is nota
single valued function and has an unstable region. This is seen
as a frequency hysteresis in the simulation. The convergence
remains good for the frequency sweep from higher to lower
frequency. However, for the sweep from lower to higher
frequency, the harmonic-balance solver has trouble findingthe
solution for the highest excitation level due to hysteresisand
resulting sudden jump in vibration amplitude. Thus, it can be
concluded that the analytical model and simulations agree but
care should be used when simulating vibrations larger than the
critical vibration amplitude.

VI. M EASURED NONLINEAR VIBRATIONS

In order to verify the theoretical results on the nonlinear
vibrations, single-crystal silicon beam resonators were fab-
ricated and measured. The beams were etched using DRIE
in [100] and [110] directions on SOI wafers. To release the
beams, the silicon etching was followed by wet etching of
the sacrificial oxide with hydrofluoric acid. To prevent stiction
after the release etch and subsequent rinse, CO2 critical point
drying was used. The resonator dimensions wereh = 9 µm,
w = 10 µm, and L = 180 µm. To eliminate unwanted
effects from the capacitive nonlinearity, the resonators were
actuated with wide gap (1.5µm) capacitive transducer [3],
[2]. For excitation, symmetric drive configuration shown in
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Fig. 3. Simulated mode shape (◦) obtained with eight masses and springs
at the hysteresis limit and the linear mode shape (-).
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Fig. 4. Analytical and simulated vibration amplitude for a 10 MHz
longitudinal mode resonator in [100] direction. The largest excitation level
results in hysteresis (sweep direction is indicated with arrows). The grey area
indicates nonconvergent solutions.

Figure 5 was used as it maximizes the vibration amplitude
for a given excitation voltage. The measurements were done
using a HP4195A network analyzer and the resonance signal
was buffered with a JFET preamplifier.

Figure 6 shows transmission curves for a [100] beam. At
low excitation level, a linear response is obtained. As the
excitation amplitude is increased, the resonance peak shifts
to a lower frequency indicating nonlinearity in accordance
to Equation (11). Eventually the transmission amplitude -
frequency curve shows hysteresis.

To accurately compare the experimental results with the
theoretical model, measurement was carried out in two steps.
First, a series of transmission curves were measured by varying
the bias voltage at a low excitation level. This linear data was
used for resonator parameter extraction and for verification of
the model. Typical measurement for a beam in [100] direction
is shown in Figure 7(a) together with simulated transmis-
sion curves. Very good agreement between simulations and
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Fig. 6. Measured linear and nonlinear hysteretic response for a [100] beam
resonator

measurement is obtained. Next, the driving voltage amplitude
was increased to characterize the nonlinearity in the resonator
response. Figure 7(b) shows measured and simulated trans-
mission curves with increasing excitation level for the same
resonator. Due to the nonlinearity at higher excitation levels,
the peak frequency shifts to lower frequency as expected for
the negativek2.

A similar set of data for a beam in [110] direction is shown
in Figure 8. The critical observation is that the nonlinearity
becomes significant at lower excitation levels for the resonators
in [110] direction than for the ones in [100] direction. This
is in perfect agreement with the theoretical prediction made
in Section IV confirming that the material nonlinearities are
significant. If only the geometrical nonlinearities were present,
no directional difference in nonlinearity would be expected.

The best fit values for the nonlinear terms in Young’s
modulus wereY1 = 0.4 and Y2 = −2.9 for the resonators
in [100] direction andY1 = −1.7 and Y2 = −5.2 for the
resonators in [110] direction. These are about 40% lower
than the predicted theoretical values. One possible explanation
is the highly boron doped silicon (NB ≈ 5 · 1018 1/cm3)
used for the microresonators measured in this study. The
literature data for the third-order stiffness sensor is fora
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(a) Amplitude-frequency measurement with varying bias voltage
(uac < 50 mV)
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Fig. 7. Measured (dotted line) and simulated (solid line) linear and nonlinear
transmission curves for a resonator in [100] direction (best fit parameters
Y1 = 0.4 andY2 = −2.9)

lightly doped silicon and the effect of doping is not known.
Another source of error can be the beam anchoring. The
anchors are at the resonator nodal point and thus their effect
is minimized. In fact, finite element simulations with Ansys
show that the anchor induced frequency shift is less than 0.2%
and large deformation analysis did not reveal any difference in
nonlinearity between free and anchored beams. Finite anchor
effects, however, cannot be completely excluded. Nevertheless,
even though a perfect agreement is not obtained, it can be
concluded that the measured resonator vibration amplitudes
are close to the predicted material limit.
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transmission curves for a resonator in [110] direction (best fit parameters
Y1 = −1.7 andY2 = −5.2)

VII. C ONCLUSIONS

Theoretical and experimental methods have shown that the
material nonlinearities contribute to the fundamental attainable
performance of the high quality factor single-crystal silicon
resonators. The predicted difference for resonators aligned in
[100] and [110] direction arising from the material nonlinearity
was confirmed in the experiments. The longitudinal mode
beam resonators were chosen for this study due to their
simple geometry, but the obtained results on nonlinear Young’s
modulus can be generally applied to estimate the single crystal
silicon resonator performance limits.
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