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Nonlinear Mechanical Effects in Silicon
Longitudinal Mode Beam Resonators

Ville Kaajakari, Tomi Mattila, Antti Lipsanen, and Aarne ®j

Abstract— The fundamental nonlinear mechanical effects in factor and much higher power handling capacity, the one
micromachined single-crystal silicon resonators are inv&tigated. dimensional nature of the beam resonators makes them well
Longitudinal mode beam resonators are chosen for the analys  gjiteq for the analysis of the fundamental resonator perfor

due to their simple geometry and high quality factor @ > L . . S
100 000). Analytical model for the resonator is developed in terms mance limits. By measuring resonators oriented in differen

of nonlinear engineering Young’s modulus that incorporates both ~ Crystalline directions, direct evidence on material noedirity
geometrical and material effects. For comparison with theheory, is obtained.
beam resonators were fabricated in two different crystallne The paper is organized as follows: First, in Section Il, the
directions. The measured nonlinearity is larger for beamsn [110]  |5qe deformation theory is used to calculate nonlineéasil
direction than for beams in [100] direction in agreement wih the ) . N
theoretical prediction. The results provide a quantitative value Young's modulus. Due to material Qf‘fec'FS, the nonlineaisty
for the appearance of the material-induced nonlinear effets in  found to be larger for beams [ 10] direction than for beams
single-crystal silicon microresonators. in [100] direction. In Section Ill, a lumped equivalent model
Index Terms—Bulk acoustic wave devices, Hysteresis, Mi- that includes the nonlinear Young’s modulus is developed
croresonators, Nonlinear oscillators, Nonlinearities, Rsonators for the longitudinal mode beam resonator. In Section 1V, the
theory of nonlinear forced vibrations is applied to the l@up
beam resonator model. An analytical expression is given to
estimate the resonator vibration amplitude maximum lichite

|. INTRODUCTION ; . .
by hysteresis. In Section V, the lumped model is compared

Micromechanical oscillators and filters are a potential a{b simulations based on a continuum model and excellent
ternative to the size consuming and costly macroscopic Colkreement is obtained. The paper is concluded with Section V
ponents such as quartz resonators. Silicon resonatorere o re experimental results on measured nonlinearities are

as an especially interesting technology due to their Comp%ﬁven. The predicted difference between then] and[100] di-
size and suitability for integration with IC technologieH.[ o ion s verified. In general, the results provide a quatite
However, the small size of micromechanical components |3 for the onset of the material-induced nonlinear ¢ffet
comparison to their macroscopic counter parts unavoidakhy e crystal silicon microresonators. This is of funcatal

results in a smaller power handling capacity. Thus, formopti o tance in determining the microresonator performance
performance, the devices may need to be operated close to the

material limits for linear operation. Quantifying thesmniis is
therefore of fundamental significance.

Comparison of different microresonator types has shownSingle-crystal silicon is often regarded as a linear materi
that bulk acoustic wave based resonators are capable aterdentil the fracture point. However, a high quality factor reak
of-magnitude higher energy storage density than flexuis rénicroresonators susceptible to nonlinearities and even th
onators [2]. Moreover, the measured nonlinear vibraticnseh small silicon material nonlinearity can become significdnt
been close to the estimated material limits. However, r@sldition to the material nonlinearity, large deformatiaso
experimental evidence on the material nonlinearity ircsiti  fesult in geometrical nonlinear effects. As an example, the
resonators have been presented. beam cross sectional area decreases in response to sigetchi

In this paper, the nonlinear effects in silicon resonatofgrce and the Cauchy stress = F/A for a given force
are quantified theoretically and experimentally for singld€comes higher. In this paper, the geometrical and material
crystal silicon longitudinal mode devices. The operatidn donlinear effects are incorporated into nonlinear Young's
the longitudinal mode resonators is based on bulk acousi@dulus that is calculated using the large deformationrtheo
waves; Consequently, the resonators have been shown to o#fed the published values for the silicon third-order séiffs
high quality factors over 100000 making them suitable fdgnsor [5].
low noise oscillators [3]. While different resonator gedriess, ~ 1he nonlinear engineering Young's modulus is defined as

Il. SILICON NONLINEARITY

plate resonators in particular [4], offer equally high dyal T
Y =2 =Y(1+Y15+Y:5%), (1)
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TABLE | u
CALCULATED NONLINEAR ENGINEERING YOUNG'S MODULUS I

Yo [GPa] Y1 Y>
Beam ([100]) 130 0.65 —4.6
Beam ([110]) 170 —-26 8.1

v

. T
u(z)=xsSm-—=z
(2) Y3

second-order corrections to the linear Young's modulys «— >
respectively. To calculate the linear and nonlinear terms i m L

Equation (1), we start from the Cauchy stress due to a finite
deformation. Including the geometrical (area and volume) Q
4_

changes and material stiffness effects, the Cauchy stsess i %g >
aXZ aX ...... » -
7y (X) = 2X J (2)

= —— (CijriMkt + Cijktmn MK Mmn), , _ o _
Pa Oay Oay, Fig. 1. Schematic of the longitudinal mode beam resonatdr the first

whereX is the particle coordinate at the finite deformatian, ™M°d€ shape
is the undeformed statgx andp, are the deformed and unde-

formed densitiesg; ;i andc¢;jximy are the second- and third-
order stiffness tensors, amg; is the Lagrangian strain [6]. For
the silicon stiffness tensor, experimentally obtainedigal(in

longitudinal mode wave, thus, the device is sometimes meder
to a bulk acoustic wave (BAW) resonator [3]. Here a model

units of GPa):; — 165.64, c1s — 63.94, cas = 79.51, c111 — for the resonator is develope_d that ?ncorporates the nealin
795, c11 = —445, 103 = —T5, cyan = 15, c155 = —310, Young's modulus cglculated in Se_ctlo_n I _

cas6 = —86 are used [5]. The third-order elastic coefficients 1h€ wave equation for a longitudinal displacemenin
are sufficient to describe elastic waves in silicon at higasst 0€ams is )

levels (9.2 GPa) and the contribution of fourth order etasti pAM = 9 <Ay@) , (5)
coefficients is negligible [7]. The second-order expansan o 0z 0z

Young's modulus (Equation (1)) therefore accurately dessr \ hare  is the beam densityd is the beam cross sectional

the silicon nonlinearities in microresonators. This idetént area, and” is the nonlinear Young's modulus that includes the
from quartz where the fourth-order elastic coefficients atg.. and volume changes and the nonlinear material eficts [

significant. _ _ _ The solution of Equation (5) can be approximated by the tinea
Here, Equation (2) is solved numerically as a functlonde shape

of applied stress. The Cauchy stress is then related to the

engineering stress, also known as the first Piola-Kirchofss u(z,t) = x(t)sinmz/2L, (6)
by 9 where z is the motion of the beam tip and is the beam
T, = <8Xi) Tis- (3) half length [9], [3]. The linear mode shape approximation is
da; justified by numerical simulations in Section V. Substitgti
The engineering strain is given by Equations (1) and (6) into (5) and integrating over the mode
X, shape leads to
Sii = — — 1. 4)
da; AL@% TP AY ) 4V, 3%Ys 2
The nonlinear Young's modulus is obtained by fiting the "2 ~ 4 L °* t3rtt et (7)

calculated strain and stress given by Equations (2), (3X4nd ) , i
to Equation (1). The obtained values for the Young's moduldd'® &ffective mass and the nonlinear spring constants can be
in [100] and [110] direction are tabulated in Table I wit{€cognized as

values in [100] direction agreeing with the published atiedy — AL
. N . . m=p
results in [6]. The contribution of the anharmonic stiffaes k(z) = ko(1 + kiz + koz?) ®)
tensor ¢;jrimy IS found to be significant. Accounting only fe o mAY gAY godn _ 3rtY
for the geometric effects give¥; = 1.0 and Y, = 0.50 0T LM T 3L 27 Terz

for the beam extension in botfi00] and [110] direction.  Thys the nonlinear vibrations in a longitudinal mode beam
This difference between the geometrical and material &ffe¢esonator can be modeled as a lumped second order system.

can be used to experimentally verify the presence of materigye equation of motion for forced beam vibrations is written
effects: If only the geometrical effects were significant, nyg

difference in nonlinearity would be observed for resonator
in [100] and [110] direction whereas an observed difference
indicates material nonlinearity.

mi + vz + k(z)x = F,, coswt, 9)

wherez is the motion of beam tipy is the damping coeffi-
cient, F,, is the magnitude of the forcing term at frequengy
[Il. N ONLINEAR BEAM RESONATOR MODEL and the mass and spring constant are given by Equation (8).
The longitudinal mode beam resonator used in this studyWe also define the natural frequeney = /k/m and the
shown in Figure 1. The vibration mode is a half wave lengttuality factor@ = wom/~.
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TABLE ||
IV. NONLINEAR FORCED VIBRATIONS
COMPARISON OF10 MHZ LONGITUDINAL MODE RESONATORS ORIENTED
The lumped model can be used to analytically characterize IN [100] AND [110] DIRECTION
the resonator nonlinearities and to estimate the maximum
vibration amplitude. Following Landau, the solutions touge Parameter Symbo [lggf”ta[“lci%] Units
t!on (9) are sea_rched by the method of successive approxima- gesonaior Reight - 0 10 o
tions by assuming a solution of form [10] Resonator width w 10 10 pm
Resonator half length L 187 213 um
x(t) = xo + @1 coswt + x2 cos 2wt + x3 cos 3wt + ... (10) Linear spring constant ko 172 196 kN?{m
k1 47 -15 10
The resonance behavior changes in the presence of nonlinear ko -3.9 30  10®
terms and the peak frequenay, is related to the vibration w 11 21 10°
. Mass m 43.6 49.7 pkg
amplitudez; by Quality factor Q 1 1 10°
, 9 Critical vibration amplitude z. 270 190 nm
Wo = wo(l + Hﬂfl), (11) Energy at critical amplitude FE,, 6.2 3.6 nJ
Power at critical amplitude P, 3.9 2.3 W
where 3 . Maximum strain Smaz 2.3 14 1073
k= —ky— —k2. 12
3 1ok (12)

. . i ) Equations (16) and (17) can be used to compare the power
The t|n_1e harmonic vibration amplitude near the resonanceHand"ng capacity of different resonators [2]. Table Il w0
then given by the critical vibration amplitudes for 10 MHz longitudinabrie
F,/m 13 beam resonators oriented in [100] and [110] direction. The
\/(w62 — W22 ¢ (wwé/Q)Q. (13) following is observed:

. . .. 1) The resonator oriented in [110] direction is about 14%
Equanns (11), (12) and (13) show that due_to either pasitiv larger than the resonator in [100] direction reflecting the
or negative K, the peak_freqL_Jenc_y always_shlfts 0 a_low_er fr larger linear Young'’s modulus in [110] direction. Thus
quency_wnh an Increasing vibration amphtud_e._ Similarly, if one were not to account for the nonlinear materiail
a negativel; results n the peak freque_ncy shifting to a lower effects, the larger size of the [110] resonator would be
freque.ncy, but a positive, results ina higher peak freque.ncy. expected result in a larger power handling capacity.
?Sl;r Igd;f\at?d tt)yIIiTr?‘bISirI aEdnEqUStlorl (St)ﬁ fhﬁsr;l;! n(;ga;[]l:j/e 2) Due to the inclusion of the material effects, the non-
or both crystafine directions. Due to the comoined a linearity factorx for the resonator in [110] direction is
ko effects,_the resonator peak frequency is always expected to almost twice of that in [100] direction. The maximum
show a shift to a lower frequency. o . . vibration amplitudez. is correspondingly about 30%

A useful measure of the maximum vibration amplitude is smaller
obtaéned 2}{/ hqalr::ulatlngt t?e bllfurclatlf{)hn pomtl_tshdowp in Fig- 3) The maximum power handling capacity for the resonator
ure _(a). Lhigher excitation Tevels, the amplitude-Trenay in [110] direction is about half of that in [100] direction.
relationship is no longer a single valued function and shows

. . R o Thus, perhaps surprisingly, the smaller [100] resonator
hysteresis as illustrated in Figure 2(b). The vibration btongbe has a phigherr) powsr haggilling capacity [due ]to smaller
at the point of bifurcation is

material nonlinearities in comparison to [110] resonator.

T =

Iy = 1 _ (14) The maximum strains at the nonlinear limit can be compared
/\/§Q|n| to the estimated fracture strain ©f10~2 for silicon [11]. The
maximum strain in the resonator center at critical vibmatio
As indicated in Figure 2(a), the critical vibration ampti&i amplitude is
(or the gr_eatest v?bration ampli@ude) @s slightly highean_h smee — e (18)
the vibration amplitude at the bifurcation point and is give 2L
by Thus, as Table Il shows, the nonlinearity limit is reached an
To = 2 (15) order-of-magnitude before the fracture.

3300k

As Equation (15) shows, increasing the quality fadtawers ] ) )
the critical vibration amplituder. as the resonator becomes 10 Verify the lumped model developed in Section lll, the
more susceptible to nonlinearities. theoretical V|br_at|on _amplltgde given by Equation (13) was
The energy stored in the resonator at the critical vibratigipmpared to simulations with a distributed model [2]. In the
amplitudez, is distributed model, the continuum is approximated with archa
1, of four masses and springs. The mass-spring chain model has
Ee= §k0xc (16) peen implemented as an electrical-equivalent model in the
a@plac simulation software. Displacement versus frequarey
sponses to a forced excitation are simulated using the hdemo
woE, balance analysis [12], [13]. As the harmonic balance amalys
Q (17) is carried out in the frequency domain, it is computationall

V. VERIFICATION OF RESONATOR MODEL

and the drive level defined as power dissipated in the respn
iS

P, =
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(a) The bifurcation point; and (b) Unstable region (dotted line) E-100
critical vibration amplitudez. in amplitude-frequency curve &3
used to estimate the maximum resulting in frequency hysteresis |
vibration amplitude (arrows) -200
Fig. 2. At bifurcation point, the vibration amplitude is natsingle valued -300_ 08 06 04 02 0 02 04 06 08 1

function leading to frequency hysteresis ..
g g y Position [z/L]

Fig. 3. Simulated mode shape)(obtained with eight masses and springs
efficient for systems that have a high quality factor and apéthe hysteresis limit and the linear mode shape (-).

thus slow to settle in the time domain (transient) analy&ie
convergence of the discretization was verified by repeatieg 330
simulations with a model based on eight mass and springs. Tt
difference was less than 1% validating the used discratizat

Figure 3 shows the simulated vibration mode for the eigh
mass-spring chain at the hysteresis limit and the analytic:
linear mode shapesih kz). The relative difference between
the nonlinear simulated beam displacements and the line.
mode shape is less thdan 102 justifying the usage of linear
mode shape in Section lll. Figure 4 shows a comparison of th
analytical lumped model and the simulated distributed rhode > |
for the 10 MHz longitudinal mode resonator in [100] directio
Excellent agreement is obtained below the bifurcation poin
As expected for the negativie and k., the peak frequency
shifts to a lower frequency as the vibration amplitude in- X . . . X
creases. At large vibration amplitudes, the solution is aot -300 -200 -100 0 100 200 300
single valued function and has an unstable region. Thisar se -1 Hz]
as a frequency hysteresis in the simulation. The converge@. 4.  Analytical and simulated vibration amplitude for & MHz
remains good for the frequency sweep from higher to lowf'9iludinal mode resonator in [100] direction. The latgexcitation level

. results in hysteresis (sweep direction is indicated withvas). The grey area

frequency. However, for the sweep from lower to high@kdicates nonconvergent solutions.
frequency, the harmonic-balance solver has trouble finttiag
solution for the highest excitation level due to hysteresid
resulting sudden jump in vibration amplitude. Thus, it c&n brigure 5 was used as it maximizes the vibration amplitude
concluded that the analytical model and simulations agute Bor a given excitation voltage. The measurements were done
care should be used when simulating vibrations larger than fysing a HP4195A network analyzer and the resonance signal

- e -Simulation

300p Analytical

1
1
1
1
1

250t ll
1 K &
1 s
Lk

200f

Nonconvergent
solutions

150

ibration amplitude [nm]

00f

50T

critical vibration amplitude. was buffered with a JFET preamplifier.
Figure 6 shows transmission curves for a [100] beam. At
VI. M EASURED NONLINEAR VIBRATIONS low excitation level, a linear response is obtained. As the

In order to verify the theoretical results on the nonlineaxcitation amplitude is increased, the resonance peaksshif
vibrations, single-crystal silicon beam resonators wexle- f to a lower frequency indicating nonlinearity in accordance
ricated and measured. The beams were etched using DRIEEquation (11). Eventually the transmission amplitude -
in [100] and [110] directions on SOI wafers. To release tHegequency curve shows hysteresis.
beams, the silicon etching was followed by wet etching of To accurately compare the experimental results with the
the sacrificial oxide with hydrofluoric acid. To prevent §tia  theoretical model, measurement was carried out in two steps
after the release etch and subsequent rinse, €fiical point First, a series of transmission curves were measured bingary
drying was used. The resonator dimensions were 9 um, the bias voltage at a low excitation level. This linear datsw
w = 10 pm, and L = 180 pm. To eliminate unwanted used for resonator parameter extraction and for verifinatio
effects from the capacitive nonlinearity, the resonatoesen the model. Typical measurement for a beam in [100] direction
actuated with wide gap (1.mm) capacitive transducer [3],is shown in Figure 7(a) together with simulated transmis-
[2]. For excitation, symmetric drive configuration shown irsion curves. Very good agreement between simulations and
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Fig. 5. Schematic of the resonator measurement set-up
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Fig. 6. Measured linear and nonlinear hysteretic respoosa {100] beam -0.3¢ A Measurement -
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measurement is obtained. Next, the driving voltage angditu
was increased to characterize the nonlinearity in the @son
re_sp(_)nse. Figure 7(b) ShOW_S meas_un_ad and simulated trar"S(_b) Large amplitude vibration resulting in nonlinear resge Up;qs =
mission curves with increasing excitation level for the sam 49 v)

resonator. Due to the nonlinearity at higher excitatioreley

the peak frequency shifts to lower frequency as expected fag. 7. Measured (dotted line) and simulated (solid linegéir and nonlinear
the negatideQ_ transmission curves for a resonator in [100] direction {f#sparameters

A similar set of data for a beam in [110] direction is shown® — * 842 = =2.9)

in Figure 8. The critical observation is that the nonlingari

becomes significant at lower excitation levels for the resors

in [110] direction than for the ones in [100] direction. This

is in perfect agreement with the theoretical prediction enad

in Section IV confirming that the material nonlinearitie® arlightly doped silicon and the effect of doping is not known.

significant. If only the geometrical nonlinearities weregent, Another source of error can be the beam anchoring. The

no directional difference in nonlinearity would be expekcte anchors are at the resonator nodal point and thus theirteffec
The best fit values for the nonlinear terms in Young's minimized. In fact, finite element simulations with Ansys

modulus wereY; = 0.4 andY, = —2.9 for the resonators show that the anchor induced frequency shift is less tha# 0.2

in [100] direction andY; = —1.7 and Y, = —5.2 for the and large deformation analysis did not reveal any diffeeenc

resonators in [110] direction. These are about 40% lownonlinearity between free and anchored beams. Finite ancho

than the predicted theoretical values. One possible eafitan effects, however, cannot be completely excluded. Neviagke

is the highly boron doped siliconNz ~ 5 - 10'® 1/cn?®) even though a perfect agreement is not obtained, it can be

used for the microresonators measured in this study. Toencluded that the measured resonator vibration ampbtude

literature data for the third-order stiffness sensor is &or are close to the predicted material limit.
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