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Nonlinear Limits for Single-Crystal
Silicon Microresonators
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Abstract—Nonlinear effects in single-crystal silicon microres-
onators are analyzed with the focus on mechanical nonlinearities.
The bulk acoustic wave (BAW) resonators are shown to have
orders-of-magnitude higher energy storage capability than flex-
ural beam resonators. The bifurcation point for the silicon BAW
resonators is measured and the maximum vibration amplitude is
shown to approach the intrinsic material limit. The importance
of nonlinearities in setting the limit for vibration energy storage
is demonstrated in oscillator applications. The phase noise cal-
culated for silicon microresonator-based oscillators is compared
to the conventional macroscopic quartz-based oscillators, and
it is shown that the higher energy density attainable with the
silicon resonators can partially compensate for the small mi-
croresonator size. Scaling law for microresonator phase noise is
developed. [1246]

Index Terms—Bifurcation, bulk acoustic wave (BAW) devices,
hysteresis, microresonators, nonlinear oscillators, nonlinearities,
oscillator noise, oscillators, phase noise, resonators.

I. INTRODUCTION

AS the wireless communication devices are becoming ubiq-
uitous, there is a growing need to miniaturize the size-con-

suming analog RF components. Although the new transceiver
architectures such as direct conversion cut down the number of
analog filters, a high spectral purity local oscillator is still re-
quired. The problem is perhaps the most obvious in the rela-
tively low cost applications such as Bluetooth where the entire
communication circuitry, with the exception of the frequency
reference and a few capacitors, has been integrated on a single
CMOS chip.

Micromechanical silicon resonators are an interesting alter-
native to the macroscopic quartz resonators due to their com-
pact size and feasibility for integration with IC technologies
[1]. Unfortunately, the smaller size of the micromechanical res-
onators unavoidably results in a lower energy storage and power
handling capacity. As a direct consequence, achieving a suf-
ficient phase noise performance becomes a challenge [2]. The
maximum power handling capacity is also a critical parameter
in filter applications. The central aspect of this paper is, there-
fore, to provide detailed knowledge of the fundamental nonlin-
earity mechanisms in microresonators and of the induced en-
ergy storage limits. The performance limits are demonstrated in
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oscillator applications and microresonator performance is com-
pared to macroscopic quartz.

The paper is organized as follows: First, the theory of non-
linear oscillations is reviewed in Section II. Expressions to es-
timate the maximum vibration amplitude (the bifurcation limit)
are given and a scaling law for the maximum energy stored in the
resonator is derived. In Section III, the various nonlinear effects
in electrostatically actuated microresonators are identified. The
maximum energy storable in silicon flexural (bridge and can-
tilever) resonators and bulk acoustic wave (BAW) resonators
is compared. It is shown that at the nonlinear limit, the BAW
resonators can store orders-of-magnitude more energy than the
flexural resonators. In Section IV, the nonlinear analysis of BAW
resonators is refined to include material effects. The distributed
material nonlinearity is theoretically estimated using the non-
linear engineering Young’s modulus. A model incorporating the
material effects is developed and simulated with the method
of harmonic balance. The simulations are compared to exper-
imental data and it is shown that the energy stored in the BAW
resonators approaches the material nonlinearity limit. In Sec-
tion V, the oscillator phase noise is considered. The equation for
phase noise is derived to explicitly show the relation between
the stored energy and phase noise. The theoretical phase noise
attainable with flexural and BAW resonators is compared to the
macro quartz crystal based oscillator performance in Section VI.
While the flexural resonators are shown to be inferior in terms
of phase noise due to their low energy storage capability, the
BAW resonators can provide performance close to the quartz
resonators. The paper is concluded with Section VII where the
impact of scaling on phase noise is analyzed.

II. NONLINEAR OSCILLATIONS

To characterize the nonlinear oscillatory motion and to esti-
mate the maximum vibration amplitude, we review the results
by Landau [3]. We take the bifurcation point as a measure of
maximum usable vibration amplitude, as at higher vibration am-
plitudes, the oscillator trajectory depends on the initial condi-
tions. Thus, the systems analyzed in this paper are weakly non-
linear and the analysis is restricted only to a single resonance
excitation. Nonlinear effects can also lead to super and subhar-
monic resonances that can also limit the fundamental mode am-
plitude [4], [5].

The equation of motion for forced oscillations is

(1)

where is the lumped mass, is the damping coefficient,
is the forcing term, and the nonlinear spring constant is
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Fig. 1. The effect of anharmonic force on oscillator transmission curves. (a) Linear response. (b) k and negative k terms tilt resonance peak to a lower frequency.
(c) Positive k tilts resonance peak to a higher frequency. (d) Large amplitude vibrations result in hysteresis.

, where is the linear term and
and are the first- and second-order anharmonic terms. We
also define the natural frequency and quality
factor . The quality factor is not usually defined for
nonlinear systems but due to its information value for engineers,
its use is justified for the weakly nonlinear systems analyzed
here. The solutions to (1) can be obtained by the method of
successive approximations by assuming a solution of form [3]

(2)

For vibrations without damping, the amplitude of the higher har-
monics is given by

(3)

The resonance behavior changes in the presence of nonlinear
terms and the resonance frequency is related to the vibration
amplitude by

(4)

where

(5)

This behavior is illustrated in Fig. 1. A typical linear amplitude
vs. frequency curve is shown in Fig. 1(a). The first-order non-
linearity (positive or negative) causes tilting of the resonance
peak to the left as shown in Fig. 1(b). A positive second-order
nonlinearity results in tilting of the peak to a higher frequency
as shown in Fig. 1(c). Increasing the excitation signal causes
further increase in nonlinearity and eventually the transmission
signal shows discontinuity due to frequency hysteresis (bifurca-
tion) as demonstrated in Fig. 1(d).

The vibration amplitude at the point of bifurcation is

(6)

As indicated in Fig. 2, the critical vibration amplitude (or the
greatest vibration amplitude) is slightly higher than the vibration
amplitude at the bifurcation point and is given by

(7)

Fig. 2. The bifurcation point x and critical vibration amplitude x .

If either or is dominant, the critical limit can be approxi-
mated from

(8)

where and (note correction to
[2] for ).

We take the critical amplitude as the limit for mechanical en-
ergy storable in the resonator. Thus, the maximum stored energy
is

(9)

If all the linear device dimensions are scaled proportionally, the
mechanical linear spring constant and the critical vibration am-
plitude scale as

(10)

where is the linear device dimension and is the quality
factor. Thus, at the nonlinearity limit, the maximum energy
stored scales as . It can be seen that increasing
the quality factor reduces the amount of energy that can be
stored in a resonator as the resonator becomes more susceptible
to nonlinear effects.

III. NONLINEARITIES IN MICRORESONATORS

The nonlinearities in electrostatically actuated resonators can
have mechanical and capacitive origin. The mechanical nonlin-
earity is due to geometrical and material effects in the resonating
element while the capacitive nonlinearity is due to electrostatic
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Fig. 3. Comparison of three different microresonators. (a) Spring hardening due to stretching of clamped-clamped beam (bridge resonator). (b) Vibrations of
clamped-free beam (cantilever). (c) Spring softening due change in BAW resonator area.

coupling mechanism. In this section, both effects are considered
and approximate analysis is carried out.

A. Mechanical Nonlinearity

It is illustrative to estimate the mechanical nonlinearity for
three devices, a bridge, a cantilever, and a bulk acoustic wave
(BAW) resonator, shown in Fig. 3. Each resonator is sized to
have the natural frequency of 13 MHz. The aim of this analysis
is to get an order-of-magnitude comparison of the maximum en-
ergy limit. For clarity, only geometrical effects are considered
and the accurate analysis that includes material effects is post-
poned until Section IV.

1) Bridge Resonator: Fig. 3(a) shows a bridge resonator,
also known as the clamped-clamped beam resonator. According
to the classical beam theory, the first mode shape is

(11)

where is the vibration amplitude at the beam center and the
constants are , , and [6]. As-
suming a point force excitation at the bridge center, the lumped
effective mass and the spring constant for the first resonance are

(12)

where is the moment of inertia , is the Young’s
modulus, is the beam height, is the beam width, and
is the beam length. Large deformations result in an additional
anharmonic force due tension caused by the change in the beam
length.

To obtain a rough estimate for the anharmonic term, the dis-
placement profile is approximated with a triangle as shown in

Fig. 3(a). While the triangle is rather crude approximation to the
mode shape given by (11), it allows easy order of magnitude es-
timation of the nonlinear spring force. The beam tensioning due
to the elongation is and the resulting force in

-direction is

(13)

Thus, the nonlinear mechanical spring is

(14)

Finite element analysis shows that this simple estimate is accu-
rate within 30% for a typical bridge microresonator. The crit-
ical vibration amplitude given by (8) is for a
13 MHz bridge resonator with and dimensions
of , , and . The corresponding
maximum stored energy is .

2) Cantilever Resonator: Unlike the bridge resonator, the
cantilever resonator shown in Fig. 3(b) has no single dominant
nonlinear effect [7]. While a full nonlinear analysis is beyond
the scope of this paper, it is useful to obtain an upper limit for the
stored vibration energy for scaling and comparison purposes.
Given that the nonlinear effects are weak, we optimistically as-
sume that the resonator can be driven close to the silicon fracture
point.

According to the linear beam theory, the effective mass and
the spring constant are

(15)
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for a point force excitation at the cantilever end [6]. The mode
shape for linear vibrations is

(16)

where is the vibration amplitude at the beam end and the con-
stants are , , and . The max-
imum strain is at the anchor point and is given by

(17)

The typical fracture strain for bulk micromachined silicon can-
tilevers is [8]. Assuming that the beams can be vibrated
at 50% of the fracture point, a 13 MHz resonator with dimen-
sions of , , and has a
maximum vibration amplitude of 300 nm. The corresponding
maximum stored energy is .

3) BAW Resonator: The beam BAW resonator shown in
Fig. 3(c) demonstrates a geometrical spring softening effect
due to the change in the cross sectional beam area. The wave
equation for a longitudinal mode in beam is

(18)

where is the undeformed beam cross sectional areas and the
deformed area is given by

(19)

where is the Poisson’s ratio. The solution to (18) is approxi-
mated by the linear solution

(20)

where is the motion of the beam tip [2]. Substituting (20) into
(18) and integrating over the mode shape leads to

(21)

The effective mass and the nonlinear spring constants can be
recognized as

(22)

Using a typical values of , , and
for a 13 MHz BAW resonator [2], the critical

vibration amplitude given by (8) is and the cor-
responding maximum energy is .

4) Microresonator Comparison: Comparing the different
resonators, the BAW resonator is seen to have orders-of-magni-
tude larger energy storage capacity than

the bridge and cantilever resonator
operating at the same frequency. Nor-

malizing the stored energy with the resonator volume gives
the maximum energy density . For the bridge, can-
tilever, and BAW resonator this is , ,
and , respectively. Thus, the high energy storage
capability of the BAW resonators arises from two factors: the
high maximum energy density and the large volume.

The approximate analysis in this section thus indicates
that the BAW devices are candidates for large energy storage
resonators. As the maximum energy density is of fundamental
interest, the approximate analysis for the BAW resonators will
be refined in Section IV where the material effects are also
considered.

B. Capacitive Nonlinearity

Due to inverse relationship between displacement and par-
allel plate capacitance, electrostatic coupling introduces non-
linear forcing terms [9]. The nonlinear spring constants are ob-
tained by a series expansion of the electrostatic force

(23)

where is the bias voltage, is the electrode area, is
the permittivity of free space, is the electrode gap, and is
the resonator displacement [2]. Including the terms up to the
second-order gives

(24)

The second-order correction can be shown to be the dominant
nonlinear electrostatic term [2]. Since the electrical spring co-
efficient is proportional to , the capacitive nonlinearity can
be reduced by lowering the bias voltage. Also, the nonlinearity
could be significantly reduced with different electrode config-
uration, e.g., comb-drive actuation. Thus, electrostatic nonlin-
earity, while inherent to actuation mechanism, does not set a
fundamental limit to the vibration amplitude. In practice, for
resonators such as the cantilever in Section III-A2 that have low
mechanical stiffness, the capacitive nonlinearity can be signifi-
cant. As an example, assuming electrode area ,
gap , and bias voltage , gives hysteresis
limit of for the cantilever resonator. This can be
compared to the 300 nm estimate for the mechanical limit.

In addition to the nonlinear spring effects, the capacitive cou-
pling results in distortion of the motional current. These har-
monics can be calculated from

(25)
Thus, even linear vibrations can result in harmonics and the har-
monics due to capacitive coupling can be much larger than the
harmonics arising from the nonlinearity and given by (3).
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IV. MECHANICAL NONLINEARITY IN SILICON

BAW RESONATORS

As was shown in Section III-A3, the geometrical nonlinear-
ities may be very small for the BAW resonators and material
effects have to be included in the analysis. In this section, an ac-
curate analysis of mechanical nonlinearity is presented for the
BAW resonators. First, the nonlinear Young’s modulus is calcu-
lated for bulk silicon. Next, a model that incorporates the mate-
rial nonlinearity is presented and nonlinear vibrations are sim-
ulated using the method of harmonic balance. The simulations
are compared to experimental results obtained for two types of
BAW resonators: longitudinal mode beam resonator and exten-
sional mode plate resonator shown in Fig. 5.

A. Theory of Large Deformations

The Cauchy stress due to finite deformation including the ge-
ometrical (area and volume change) and material stiffness ef-
fects is

(26)

where is the particle coordinate at finite deformation, is the
undeformed state, and are the deformed and undeformed
densities, and are the second and third-order stiff-
ness tensors, and is the Lagrangian strain [10]. The third-
order stiffness tensor for silicon has been experimentally ob-
tained using ultrasonic wave measurements [11] and theoretical
analysis [12]. This data and (26) enable computation of non-
linear strain dependent engineering Young’s modulus

(27)

where is the force divided by the initial undeformed area (en-
gineering stress), is the displacement gradient with
respect undeformed coordinates (engineering strain), and and

are the first- and second-order corrections respectively. Cal-
culated values for the nonlinear Young’s modulus are tabulated
in Table I with values in [100]-direction agreeing with the pub-
lished analytical results in [10]. The contribution of the anhar-
monic stiffness tensor is found to be significant. For ex-
ample, accounting only for the geometric effects gives
and for the [100] beam extension. The third-order stiff-
ness tensors in [11] and [12] are slightly different but the resulting
difference in the nonlinear Young’s modulus is only about 5%.

Unfortunately, no information exists on the effect of doping
on the anharmonic stiffness tensor. Thus, the calculated values
may not be accurate for the highly boron doped silicon

used for the microresonators measured in this
study. Nevertheless, the literature data allows a comparison of
measured resonator nonlinearities and the fundamental material
limits.

The relationship between the nonlinear Young’s modulus and
spring constants is

(28)

TABLE I
CALCULATED NONLINEAR ENGINEERING YOUNG’S MODULUS

where is the spring stretching, is the area, and is the
length. We emphasize that this includes both the material and
geometrical effects. Using (8) and (28), the critical strain am-
plitude at the hysteresis due to first- and second-order mechan-
ical nonlinearity corrections can be approximated. Based on the
computed values for Young’s modulus in Table I, we estimate
the critical vibration amplitude for a plate res-
onator in Fig. 5 with . In this case, both the first-
and second-order correction terms are significant.

B. Modeling of the Distributed Nonlinearity

To accurately simulate the nonlinear vibrations, the dis-
tributed nature of stress and strain has to be included in the
model. In our devices the resonator modal shape is to a good
approximation sinusoidal and the strain is the highest at the
center. A full distributed model would be computationally very
demanding and therefore the continuum is approximated with
a discrete chain of masses connected with nonlinear springs.
As shown in Fig. 4, a good approximation is obtained with a
relatively small number of masses. A four mass system appears
to be a good compromise between the accuracy and simulation
speed, and is used in this paper. The mass-spring chain model
has been implemented as an electrical-equivalent model in
the Aplac simulation software. In addition to the mechanical
nonlinearity, the equivalent circuit includes an accurate model
of the capacitive coupling [9]. Displacement versus frequency
responses to a sinusoidal excitation are simulated using the har-
monic balance analysis [13]. As the harmonic balance analysis
is carried out in the frequency domain, it is computationally
efficient for systems that have a high quality factors and are
thus slow to settle in the time domain (transient) analysis.

C. Measured Nonlinear Vibrations

To characterize the nonlinear vibrations in single-crystal
silicon micromechanical resonators, two bulk acoustic wave
(BAW) resonator designs shown in Fig. 5 were measured. The
devices were fabricated by etching a SOI wafer. Both the beam
and plate BAW resonators show high quality factors exceeding
100 000 and operate at 11.7 MHz and 13.1 MHz respectively.
Further details of these resonators are provided in [2] and [14].

The measurements were done using a HP4195A network ana-
lyzer and the resonance signal was buffered with a JFET pream-
plifier with a low 100 input impedance to rule out resonator
loading by the measurement set-up. Fig. 6 shows the measured
and simulated transmission amplitudes for the plate BAW
device shown in Fig. 5. At higher drive levels, the resonator peak
becomes sharper and shifts down in frequency. As discussed in
Section III-A, this tilting is expected with and/or negative .

The measured and simulated data shown in Fig. 6(a) corre-
spond to the best fit values and . These ex-
perimentally obtained values are about 50% lower than theoret-
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Fig. 4. Equivalent mechanical model used in Aplac circuit simulator. Material nonlinearity is included as nonlinear springs. As the number of discrete elements
N is increased, the frequency difference �f=f between discrete and continuum model approaches zero.

Fig. 5. Schematics of the beam and plate resonators used in measuring nonlinearities in single-crystal BAW resonators.

Fig. 6. Measured and simulated transmission curves for 2-D plate (f = 13:1MHz) with nonlinear capacitive and mechanical effects. The maximum vibration
amplitude at the hysteresis limit x was 155 nm independent of bias showing that hysteresis limit is due to mechanical and not capacitive nonlinearity. (a) Measured
and simulated (-) transmission jS j curves with the material nonlinearity included in the model (Y = �1:4 and Y = �4:0). The highest excitation level results
in a discontinuity (the sweep direction is from right to left). (b) Measured (o) and simulated (-) transmission jS j curves without the material nonlinearity included
in the model. Capacitive spring softening alone does not explain the frequency shift.

ically estimated for a solid plate. This discrepancy can probably
be attributed to the etch holes (39 39 matrix of 1.5 holes)
in the plate that lower the effective Young’s modulus. Another
source of discrepancy may the corner anchoring that although
flexible may add to the nonlinearity. Nevertheless, the obtained
maximum vibration amplitude is close to the theoretical limit for
bulk silicon. The hysteresis limit was , which cor-
responds to average strain of across the
resonator and maximum strain of

at the resonator center. This corresponds to the stored energy of
190 nJ or average energy density of .

To quantify the effect of nonlinearity due to the capacitive
coupling and to show that the nonlinearity is indeed of mechan-
ical origin, the transmission was also simulated without the me-
chanical nonlinearity in the model. As the capacitive nonlin-
earity given by (24) increases as a square of bias voltage, it
is insignificant at low bias voltages but becomes important at
high bias voltages. This is evident in Fig. 6(b), where simulation
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Fig. 7. The electrical equivalent circuit for MEMS-based oscillator.

without mechanical nonlinearity show no excitation amplitude
dependence at 50 V bias voltage. Higher bias voltages show ca-
pacitive spring softening effect, but even at this is
not enough to explain the observed nonlinearity. A further proof
that the mechanical nonlinearity dominates at low bias voltages
is obtained by looking at the bias and excitation voltage product

at the hysteresis limit. As the driving force and con-
sequently the vibration amplitude is proportional to
this remains constant if the mechanical nonlinearity dominates.
Our measurements for the plate BAW resonator indeed show
that hysteresis is obtained at constant .

As both the first- and second-order nonlinearity can cause
similar distortion on the transmission curve, there is uncertainty
about the relative contribution of and . In principle the
first- and second-order effects can be differentiated by looking
at the vibration spectrum. Unfortunately, as discussed in Sec-
tion III-B, the parallel plate transducer produces harmonics even
for linear vibrations. For our devices, the harmonics in mo-
tional current due to capacitive coupling given by (25) are or-
ders-of-magnitude larger than the harmonics due nonlinear vi-
brations given by (3). Thus, measuring the motional current
spectrum does not yield further information about the mechan-
ical nonlinearity. Future work will measure the mechanical vi-
brations using optical interferometric techniques.

The measured beam BAW’s showed similar behavior but the
measured values showed larger variation from device to de-
vice. We attribute this to the larger surface-to-volume ratio that
causes small geometrical or surface defects to have a larger ef-
fect. Also, the mechanical spring constant for the beams is much
smaller than for the plate causing the capacitive nonlinearity to
be more significant. With capacitive nonlinearity shadowing the
mechanical nonlinearity, accurate absolute values for the non-
linear mechanical spring constant could not be obtained. Based
on our measurements, we estimate upper limits of and

for the correction terms. Thus, even for the 1-D beam
BAW’s, we can conclude that the measured mechanical non-
linearities are not significantly larger than estimated from the
theory and that the devices can be operated near the fundamental
strain limit.

V. NONLINEARITY AND PHASE NOISE PERFORMANCE

To show the importance of nonlinearities for microresonator
performance, it is useful to consider noise-to-carrier ratio in
an oscillator. Fig. 7 shows an electrical equivalent circuit for

a MEMS resonator connected in an oscillator loop with a loop
amplifier and a buffer to interface with the outside world. The
schematic representation that uses two amplifiers is chosen as it
simplifies the analysis by the separating of the near-carrier me-
chanical noise and the far-from-carrier amplifier noise (noise
floor).

The motional resistance , capacitance , and inductance
depend on the effective spring constant , the effective mass

, the quality factor , and the electromechanical transduction
factor [2]. The relation between current and mechanical ve-
locity is .

The mechanical vibration energy stored in the resonator is

(29)

where is the mean-square signal current through the circuit.
The theoretical maximum power deliverable to the buffer is the
same as the power dissipated in the motional resistance i.e.

(30)

In specifying quartz crystal oscillators, the and are in-
terchangeably referred to as the “drive level” and is a measure
of resonator power handling capacity.

The noise current due to motional resistance at the buffer
input is shaped by RLC impedance and is

(31)

For a frequency offset from the center frequency , the
impedance of the series RLC-circuit is

(32)

We can thus write the noise power density due to mechanical
losses at the buffer input as

(33)

The loop amplifier will also add noise but with proper noise
optimization it’s contribution to near-carrier noise can be made
small. For simplicity, the loop amplifier noise is therefore
omitted here.

The buffer amplifier noise sets a fundamental limit for the
oscillator performance at large frequency offsets. The resonator
impedance seen by the buffer amplifier is a rapidly varying func-
tion of , and thus perfect noise matching cannot be obtained
for all frequency offsets. In practice, the consequence is the
constant amplifier noise floor at large frequency offsets. We
model the buffer noise using a white noise power spectral den-
sity .

Adding the buffer noise and dividing (33) by two to
account only the phase not amplitude noise gives the overall
phase noise spectrum. It is customary to normalize this with the
carrier power to obtain the phase noise-to-carrier ratio

(34)
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Thus, we have a near-carrier region originating from mechanical
dissipations where noise falls as , and a constant noise
floor region dominated by the buffer amplifier. Equation (34)
bears close similarity to the generally used models for oscillator
phase noise (e.g., “Leeson’s equation”) [15], [16]. The analysis
has ignored the effect of -noise, which would result in noise
falling as very close to the carrier.

The important observation is that both terms in (34) have an
inverse dependence of signal power and consequently of
the energy (30). As was shown in Section II, the maximum
energy at nonlinear limit scales with device size as

. Thus, assuming fixed frequency, the signal power scales
and the resonator noise floor at nonlinear limit

is proportional to . Thus, the energy storage capacity sets
the fundamental performance limit for microresonators and the
small size cannot be compensated with a high-quality factor.

Finally, we note that the electromechanical transduction factor
does not appear in (34) as it assumes optimal power coupling.

However, in practice a sufficient is required to optimally realize
the oscillator using technologically feasible amplifier interface.

VI. PHASE NOISE COMPARISON

Using (34), the theoretical phase noise can be compared for
the microresonators analyzed in this paper and for a macro-
quartz crystal. The bifurcation limit for a 5 MHz AT-cut
quartz crystal resonator ( , ) is

and the corresponding maximum drive level
and stored energy are and

, respectively [17]. These published
values roughly agree with our own measurements of the hys-
teresis in quartz crystals. The crystal volume is estimated to
be and the corresponding stored energy density is

. Extrapolated to 13 MHz (see Section VII),
the critical parameters are , ,

, and . Comparison to
the silicon plate BAW resonator
shows that orders-of-magnitude higher energy density can be
achieved with silicon micromechanical resonators than with
shear-mode macroscopic quartz devices. This can partially
compensate for the small size of RF-MEMS oscillators.

Fig. 8 shows the theoretical phase noise density for the macro
AT quartz crystal, silicon bridge, silicon cantilever, and silicon
beam BAW and plate BAW resonators summarized in Table II.
All but the cantilever resonators are assumed to be driven to the
mechanical hysteresis limit. The cantilever resonator operates
at 50% of the fracture limit (see Section III-A2). In the plots,
we have assumed buffer noise of
(or in 50 system). The bridge and can-
tilever resonators’ poor noise performance is due to low quality
factor and energy storage capability. In comparison, the beam
BAW has improved performance but the noise floor is still about
30 dB higher than for macro quartz crystal oscillator. The plate
BAW resonator has the same quality factor as the beam BAW but
due to the improved energy storage capability, the noise perfor-
mance is close to the quartz crystal. In practice the oscillators
must be operated well below the bifurcation to avoid aliasing of
noise and the bifurcation limit is used for comparison purpose
only and it may not be reached with real oscillators.

Fig. 8. Comparison of theoretical phase noise for a bridge, beam-BAW,
2-D-BAW, and macroscopic quartz resonator based oscillators.

It may be of interest to compare the noise analysis presented
here to the analysis on noise and scaling in [18]. The devices
analyzed here are much larger and consequently the noise due
to internal dissipation is much larger than the quantum noise
sources in [18]. However, when scaling to smaller dimensions,
the quantum effects can be significant.

For a real world performance comparison, Fig. 9 shows mea-
sured single-sideband (SSB) phase noise to carrier ratio for a
test oscillator based on the plate resonator [19]. The oscillator
demonstrates that sufficient energy can be stored in the mi-
croresonator to satisfy the GSM-specifications for phase noise.

VII. SCALING TO HIGHER FREQUENCIES

This paper has focused on 13 MHz resonators—a frequency
typically used for reference oscillator applications. In transre-
ceiver, the reference frequency is multiplied by a factor to gen-
erate the local oscillator (LO) at the carrier frequency (typically
1–2 GHz). Due to this frequency multiplication, the phase noise
scales as [16]. Alternatively, the resonator can be scaled to
operate at higher frequency to obtain the LO frequency directly.
Thus, it is of interest to develop a scaling law for micro-oscil-
lator phase noise as a function of resonator natural frequency.

Assuming that the frequency-quality factor product is
constant [20], the device scales as

(35)

where all the device dimension are scaled by the same factor
and the device is operated at the hysteresis limit. The phase

noise for the scaled device is

(36)
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TABLE II
RESONATORS USED FOR NOISE SPECTRUM COMPARISON. THE SILICON RESONATORS ARE BASED ON RESULTS PRESENTED IN THIS PAPER. THE QUARTZ

RESONATOR IS EXTRAPOLATED FROM DATA FOR 5 MHz AT-CUT QUARTZ CRYSTAL [17]

Fig. 9. Measured noise spectrum for a microresonator-based low-phase noise
oscillator.

The noise floor is seen to remain constant while the near carrier
noise degrades as . In practice, the noise floor will deteri-
orate for higher frequency oscillator as it is more difficult to
obtain optimal coupling. Thus, from purely phase noise con-
siderations, it is better to use low frequency reference and mul-
tiply it to higher frequency than it is to make a high frequency
oscillator [16].

VIII. CONCLUSION

For many practical applications, the resonator power han-
dling capacity and quality factor are equally important. In this
paper the nonlinear limits for silicon resonators have been quan-
tified and expressions for scaling of resonator energy storage
and power handling capacity were derived. Different microres-
onators were analyzed using one degree-of-freedom model with
anharmonic spring forces. The maximum vibration amplitude
was estimated from bifurcation in the vibration amplitude vs.
frequency curve. Increasing the resonator quality factor was
shown to make the resonator more susceptible to nonlinearities
and lower the maximum energy stored. The geometrical non-
linearity was shown to be the limiting mechanical nonlinear
effect in the bridge resonators. In comparison, the BAW res-
onators demonstrated operation near the fundamental material
limit for silicon. The BAW resonators were theoretically and
experimentally shown to have three orders-of-magnitude larger
energy storage capability than the analyzed flexural resonators.
Moreover, the comparison to macro quartz crystals showed
that for the silicon resonators the maximum energy density
attainable is orders-of-magnitude larger. The importance of

the energy storage capacity was demonstrated by estimating
the theoretically attainable oscillator signal-to-noise ratio. The
flexural resonators were shown to have inferior phase noise
floor in comparison to macroscopic quartz crystals while the
BAW resonators can rival the quartz crystal performance.
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