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Phase Noise in Capacitively Coupled
Micromechanical Oscillators
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Abstract—Phase noise in capacitively coupled micro-
resonator-based oscillators is investigated. A detailed anal-
ysis of noise mixing mechanisms in the resonator is pre-
sented, and the capacitive transduction is shown to be
the dominant mechanism for low-frequency 1�f-noise mix-
ing into the carrier sidebands. Thus, the capacitively cou-
pled micromechanical resonators are expected to be more
prone to the 1�f-noise aliasing than piezoelectrically cou-
pled resonators. The analytical work is complemented with
simulations, and a highly efficient and accurate simulation
method for a quantitative noise analysis in closed-loop os-
cillator applications is presented. Measured phase noise for
a microresonator-based oscillator is found to agree with the
developed analytical and simulated noise models.

I. Introduction

Micromechanical resonators are potentially a com-
pact and economic alternative to the size consuming

quartz crystals that are ubiquitous in today’s electronic
devices. The microresonators have been demonstrated to
offer quality factors comparable to crystals (Q > 100 000
at 10 MHz), but achieving a sufficient power handling ca-
pacity with micron-sized components has been a challenge
[1]. For silicon resonators, the maximum vibration ampli-
tude, and therefore the power handling capacity, are lim-
ited by nonlinearities. Understanding these fundamental
nonlinear effects recently has lead to the demonstration
of microresonator that provides power-handling capacity
comparable to macroscopic crystals [2]–[4]. Consequently,
a microresonator-based oscillator has been demonstrated
to offer noise floor of −150 dBc/Hz at 13 MHz, meeting
the typical phase noise requirements for wireless commu-
nication [5]. Recently, comparable performance has been
obtained with a polycrystalline silicon disk resonator and
integrated electronics [6].

As prior work on microresonators has focused on the
power-handling capacity, only little attention has been
given to near-carrier noise in micro-oscillators, but con-
siderable theoretical and experimental work has been done
on phase noise in conventional oscillators [7]–[11]. A signif-
icant near-carrier noise source is the aliasing of 1/f -noise
to carrier side-bands due to the mixing of low-frequency
noise and carrier signal in the active circuit elements. In
this paper we show that, in addition to amplifier non-
linearities, the electrostatic transduction commonly used
for coupling to silicon resonators is inherently nonlinear
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and leads to aliasing of noise. This process is illustrated in
Fig. 1 that shows a schematic representation of an oscilla-
tor comprised of a resonator and sustaining amplifier. In
addition to amplifying oscillation signal uac, the amplifier
output may present a significant amount of low-frequency
1/f -noise to the resonator input. A linear resonator ele-
ment would effectively filter out this low-frequency noise,
but nonlinearities in the resonator will lead to unwanted
aliasing of the low-frequency noise to carrier side-bands.
Thus, the capacitive coupling is expected to be intrinsi-
cally more prone to noise aliasing than the conventional
piezoelectrical coupling.

Section II of this paper reviews the electrostatic actua-
tion of microresonators, and the electrical equivalent is de-
veloped. Nonlinear effects are analyzed, and the maximum
vibration amplitude is estimated. In Section III, the noise
aliasing mechanisms in the resonator are investigated. The
aliasing due to the capacitive transduction is compared to
mixing due to nonlinear spring effects, and the capacitive
transduction is shown to be the dominant noise-mixing
mechanism in the resonator. Section IV incorporates the
aliased noise into the “Leeson’s” phase noise model. In Sec-
tion V, a simulation method is demonstrated to accurately
analyze complex noise aliasing behavior in nonlinear oscil-
lators, and the analytical model is verified. The theoretical
model is compared to experimentally measured phase noise
in Section VI and good agreement is found. In Section VII,
the implications of the noise aliasing on oscillator design
are discussed.

II. Electrostatically Actuated

Microresonators

In this section, a linear electrical model for the resonator
is reviewed followed by the analysis of nonlinear forces
introduced by the electrostatic coupling.

A. Linear Resonator Model

The model used in this paper for the microresonator is
shown in Fig. 2. The mechanical vibrations are modeled
with a lumped mass-spring-dashpot resonator in which the
lumped mass and spring are derived from the resonator ge-
ometry and mode-shape. The coupling to the resonator is
provided by the electrostatic transduction over the narrow
gap d. The equation of motion for forced oscillations of the
mass-spring-dashpot system in Fig. 2 is:

mẍ + γẋ + kx = Fe, (1)
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Fig. 1. Schematic representation of noise aliasing in micro-oscillator.
A linear resonator would filter out the amplifier low-frequency 1/f-
noise present at the resonator input, but nonlinear filtering element
will result in noise aliasing.

Fig. 2. Mechanical lumped model for the resonator.

where m is the lumped mass, γ is the damping coefficient,
Fe is the electrostatic forcing term, and k is the mechanical
spring constant. We also define the natural frequency ω0 =√

k/m and the quality factor Q = ω0m/γ. The resonator
displacement x due to the force Fe is given by:

x = H(ω)Fe, (2)

where the force-displacement transfer function H(ω) from
(1) is:

H(ω) =
k−1

1 − ω2/ω2
0 + iω/Qω0

. (3)

The electrostatic force actuating the resonator is:

Fe =
1
2

∂C

∂x
(Udc + uac)

2
, (4)

where Udc is the direct current (DC)-bias voltage over the
gap, uac is the alternating current (AC)-excitation voltage,
and:

C = ε0
Ael

d − x
, (5)

is the transducer working capacitance that depends on the
permittivity of free space ε0, the electrode area Ael, and
the nominal electrode gap d. The current through the elec-
trode is:

isig =
∂CU

∂t
≈ ∂C

∂t
Udc + C0

∂uac

∂t
, (6)

Fig. 3. The electrical equivalent circuit for MEMS-based oscillator.

where C0 is the capacitance at zero displacement. In (6),
the first term is due to the capacitance variations (mo-
tional current im), and the second term is the normal AC-
current through the capacitance. The electromechanical
transduction factor is identified as [12]:

η = Udc
∂C

∂x
≈ Udc

C0

d
. (7)

The resulting relation between the motional current im,
the mechanical transducer velocity ẋ, the excitation volt-
age uac, and the force Fe at the excitation frequency are:

im ≈ ηẋ,

Fe ≈ ηuac,
(8)

where the displacement x is assumed to be small com-
pared to the gap d. By substituting (8) into (1), an electri-
cal equivalent circuit shown in Fig. 3 can be derived. The
component values are:

Rm =
√

km/Qη2 = k/ω0Qη2,

Cm = η2/k,

Lm = m/η2, and
C0 = ε0Ael/d0.

(9)

The important observation is that, to obtain a small
motional resistance Rm, a large electromechanical trans-
duction factor is needed requiring either a small gap d or
a large DC-bias voltage Udc. In practice, the voltage usu-
ally is limited by system considerations and, thus, a small
gap, typically less than 1 µm, is needed. Unfortunately, as
will be seen in the following sections, the small gap will re-
sult in unwanted nonlinear effects that limit the vibration
amplitude and cause noise aliasing.

B. Nonlinear Electrostatic Spring Force

Due to the inverse relationship between the electrode
displacement and the parallel plate capacitance, the elec-
trostatic coupling introduces nonlinear spring terms. Ad-
ditionally, nonlinear effects of mechanical origins are pos-
sible, and most fundamentally material nonlinearities set
the limit for the miniaturization [4] [13]. In this paper,
however, the gap is assumed small, and therefore, the ca-
pacitive nonlinearity dominates. Thus, a linear mechanical
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model is used, and the accurate nonlinear model is used
for the electromechanical transduction [14].

The nonlinear electrostatic spring constants are ob-
tained by a series expansion of the electrostatic force:

F =
U2

dc

2
∂C

∂x
. (10)

Including terms up to the second order gives for the
electrostatic spring:

ke(x) = k0e(1 + k1ex + k2ex
2)

k0e = −U2
DCC0

d2 , k1e =
3
2d

, and k2e =
2
d2 . (11)

The linear electrostatic spring k0e is negative, and thus
lowers the resonance frequency. Of the nonlinear terms, the
second-order correction k2e can be shown to dominate [1].

The electrostatic nonlinearity limits the resonator drive
level as at high-vibration amplitudes; the amplitude-
frequency curve is not a single valued function and oscilla-
tions may even become chaotic [1] [4]. Therefore, the max-
imum usable vibration amplitude can be estimated from
the largest vibration amplitude before a bifurcation. This
critical vibration amplitude can be written as [4], [15]:

xc =
2√

3
√

3Q|κ|
, (12)

where:

κ =
3k2ek0e

8k
− 5k2

1ek
2
0e

12k2 . (13)

Defining the drive level as the motional current through
the resonator, the maximum drive level is given by (8) and
(12) and can be written as:

imax
m = ηω0xc. (14)

As will be seen in Section IV, the maximum drive level
sets the noise floor obtainable with microresonator-based
oscillator.

The analysis in this section assumed that the nonlinear-
ity is due to the capacitive spring effects, but (12) and (13)
are valid also for cases in which mechanical nonlinearities
dominate. As an example, in the comb drive actuated res-
onators, the capacitance depends linearly on displacement
[16]. In such a case, the nonlinear springs and the max-
imum vibration amplitude is estimated from mechanical
nonlinearities [4].

III. Aliasing of Noise in Microresonator

In addition to the nonlinear spring effects, the capaci-
tive coupling results in up- and down-conversion of noise.
As seen from the trigonometric identity:

2 cos∆ωt · cosω0t = cos (ω0 + ∆ω) t + cos (ω0 − ∆ω) t,
(15)

Fig. 4. Schematic representation of noise aliasing. Low-frequency
noise un(∆ω) present at filter input is aliased to carrier side-bands
ω0 ± ∆ω due to mixing in resonator.

the low-frequency noise signal at ∆ω multiplied with the
carrier signal at ω0 results in additional near-carrier noise
side-bands at ω0±∆ω. As illustrated in Fig. 5, this mixing
in the resonator causes aliasing of low-frequency noise to
carrier side-bands.

The aliasing of low-frequency noise can be very detri-
mental to the oscillator phase noise performance as
low-frequency 1/f -noise can be considerably larger than
the thermal noise floor. The typical low-frequency noise
sources present at the resonator input are the active sus-
taining elements (transistors) in the oscillator circuit that
may have a significant amount of 1/f -noise [17]. Resonator
biasing also may be noisy, especially if it is implemented
with a charge pump. Notably mechanical 1/f -noise also
may be significant if the resonator is scaled to nanome-
ter scale [18]. However, the noise up-mixing analysis pre-
sented here is not limited to a specific noise source as only
the magnitude of the noise at resonator input is needed to
predict noise aliasing in the resonator.

In this section, the noise up-mixing due to the elec-
trostatic coupling is analyzed. Mixing due to the electro-
static transduction is compared to mixing due to nonlinear
spring effects. As Fig. 4 indicates, the analysis in this sec-
tion is an open-loop, up-conversion analysis of different
up-mixing mechanisms. The closed-loop oscillator analy-
sis, including the effect of positive feedback, is presented
in Section IV.

A. Mixing Due to Capacitive Current Nonlinearity

Fig. 5(a) illustrates how low-frequency noise un at ∆ω
is mixed to a higher frequency due to the time varying gap
capacitance. The capacitance is:

C(x) ≈ C0

(
1 +

x0

d

)
, (16)

where x0 is the resonator displacement at the excitation
frequency. The current through the resonator due to the
voltage un is then:

in =
∂(C(x)un)

∂t
≈ C0

d
ẋ0un + C0u̇n. (17)

The first term in (17) isresponsible for the noise up-
conversion and results in noise current at ω0 ± ∆ω. Us-
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(a) (b)

(c)

Fig. 5. Different mixing mechanism for the noise voltage un at ∆ω to
high-frequency noise current. (a) Time-varying capacitor (plate dis-
placement x) results in up-converted noise current. (b) Square force
law results in mixing of noise and signal voltages, un and uac, respec-
tively. (c) Nonlinear spring force results in mixing of low-frequency
and signal frequency vibrations.

ing the relation between the signal voltage and resonator
displacement given by (2) and (8), the up-converted noise
current due to capacitive current mixing can be written as:

icn = 2Γcuacun, (18)

where we have defined the current aliasing factor:

Γc =
Qω0η

2

2kUdc
. (19)

As (15) shows, the current icn given by (18) has equal
amplitudes at frequencies ω0 ± ∆ω.

B. Mixing Due to Capacitive Force Nonlinearity

The second main up-conversion avenue is illustrated in
Fig. 5(b). Due to the square force law, the low-frequency
noise voltage un at ∆ω is mixed with the high frequency
signal voltage uac at ω0. The capacitive force is given by:

Fn =
U2

2
∂C

∂x
≈ (Udc + uac + un)2

2
C0

d

(
1 + 2

x0

d

)
,
(20)

where the first three terms of power series expansion of the
capacitance have been kept. The products uacun and xun

result in up-converted noise at ω0 ± ∆ω. Thus, the force
at ω0 ± ∆ω is:

Fn(ω0 ± ∆ω) ≈ C0

d
uacun + 2

C0

d

x0

d
Udcun.

(21)

This high-frequency noise force near the resonator reso-
nance excites the resonator, and the displacement is given
by (3). Close to the resonance, the noise-induced displace-
ment is:

xF
n ≈ −jQ

Fn

k
, (22)

and the resulting noise current is:

iFn = ηẋn = −jηω0xn. (23)

Substituting (21) and (22) to (23) and using x0 =
−jQηuac/k leads to:

iFn = 2ΓF uacun, (24)

where we have defined the force aliasing factor:

ΓF ≈ Qω0η
2

2kUdc

(
1 − j2

QηUdc

kd

)
. (25)

Here the first term in brackets is due to the square
force law [product uacun in (20)], and the second term
in brackets is due to the nonlinear capacitance [prod-
uct xun in (20)]. If we had kept only the first term of
the power series expansion of capacitance [linear capaci-
tance, C(x) = C0(1 + x/d)], then the force aliasing factor
would be:

ΓF ≈ Qω0η
2

2kUdc
(linear C), (26)

which is the same as the current aliasing factor given
by (19).

It is of interest to compare the two terms in brackets in
(25). Substituting typical microresonator parameters (Ta-
ble I) gives (2QηUdc/kd) ≈ 63. Thus, the second term in
brackets in (25) is the dominant term and the noise alias-
ing could be significantly reduced with a linear coupling
capacitor.
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TABLE I
Resonator Characteristics at Udc = 20 V.

Parameter Symbol Value Units

Resonance frequency f0 13.2 [MHz]
Effective spring constant k 16.8 [MN/m]
Effective mass m 2.44 [nkg]
Quality factor Q 100,000
Electrode area Ael 12,000 [µm2]
Transducer gap d 0.2 [µm]
Motional capacitance Cm 168 [aF]
Motional inductance Lm 867 [mH]
Motional resistance Rm 718 [Ω]
Critical amplitude xc 36.0 [nm]

C. Mixing Due to Nonlinear Spring Force

The up-conversion avenue due to nonlinear spring force
is illustrated in Fig. 5(c). The force due to the noise voltage
Fn = ηun results in low-frequency resonator vibrations.
Because these vibrations are far from the resonance, the
amplitude is given by:

xn = H(ω)Fn ≈ ηun

k
. (27)

Due to the nonlinear spring effects, these low-frequency
vibrations are multiplied with the vibrations at the signal
frequency. Assuming spring force F = k0x(1 + k1x) and
substituting x = x0 + xn, the up-converted noise force is:

F k
n = 2k0k1x0xn. (28)

The resulting current can be evaluated as in Section III-
B. Assuming that the nonlinear spring is dominated by
the capacitive effects given by (11), the up-converted noise
current due to nonlinear spring mixing is given by:

ikn = 2Γkuacun, (29)

where we have defined the spring aliasing factor:

Γk = j
3Q2ω0η

4Udc

2d2k3 . (30)

D. Comparison of Mixing Mechanisms

The ratio of aliasing factors due to the current up-
conversion and nonlinear spring mixing given by (19) and
(30), respectively, is:

∣∣∣∣ Γc

Γk

∣∣∣∣ =
1

3Q

(
dk

ηUDC

)2

. (31)

Substituting typical microresonator parameters (Ta-
ble I) into (31) gives |Γc/Γk| ≈ 500. Thus, we can conclude
that the main aliasing mechanism is the nonlinear electro-
static transduction (capacitive current and force nonlin-
earity) and not the nonlinear spring effects.

For a linear capacitance C(x) = C0(1 + x/d), the alias-
ing factors for the current and force up-conversions given

by (19) and (26), respectively, are equal. Substituting typ-
ical microresonator parameters (Table I) into (31) gives
|Γc| = |ΓF | = 34.8 µA/V2 (linear C). With the inclusion
of the nonlinear terms in capacitance, the force aliasing
factor given by (25) is |ΓF | = 2.2 mA/V2. As noted be-
fore, this is 63 times larger than for a linear capacitance.
Thus, for a parallel plate coupling capacitor, the force up-
mixing is the dominant aliasing path.

E. Simulation of Noise Aliasing

To verify the analytical results, the aliasing of a low-
frequency signal was simulated with a harmonic balance
circuit simulator [14]. The resonator was excited using a
high-frequency signal at the resonance frequency and a
small-frequency signal at frequency ∆f . Fig. 6(a) shows
the simulated aliasing factors Γ at different frequencies
∆f obtained using the accurate model with all capaci-
tive nonlinearities included [14]. At small-frequency off-
sets (∆f < f0/2Q) the magnitude of aliasing factor is
very close to the analytical estimate of |Γ| = 2.2 mA/V2

given by:

Γ = ΓF + Γc, (32)

where ΓF and Γc are given by (25) and (19), respectively.
Outside the resonator bandwidth (∆f > f0/2Q), the alias-
ing is significantly reduced as the motion is not enhanced
by the resonator quality factor.

For a linear capacitor, the aliasing shown in Fig. 6(b)
is smaller by a factor of 63. Again, the result is close to
the analytical result of Γ = 69.6 µA/V2 given by the sum
of (19) and (26). Figs. 6(c) and (d) show the aliasing with
only the force and current nonlinearity included in the
model, respectively. It is shown that, for small-frequency
offsets (∆f < f0/2Q), both effects are equal and agree
with (19) and (26). At higher offsets, the effect of force
nonlinearity is reduced as the resonator is not excited far
from the resonance. The aliasing due to current nonlinear-
ity does not show this effect as it is due to direct modula-
tion of the capacitance.

To further validate the noise aliasing analysis, the alias-
ing factors were simulated at different noise levels. The
aliasing factors remained unchanged to noise voltages less
than 10 mV. At higher noise levels, the oscillation fre-
quency was changed as the noise started to be significant
in comparison to bias voltage. As the typical noise levels
are less than 1 µV/

√
Hz, the first-order mixing analysis

is enough for accurate estimation of noise aliasing in the
resonator.

IV. Analytical Phase Noise Model

Here an analytical model for the noise in a closed-
loop micromechanical oscillator is developed. The model
is based on well-known Leeson’s model for the phase noise
[7] [8] [10] and is expanded to incorporate the 1/f -noise
aliasing in microresonators.
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(a) (b)

(c) (d)

Fig. 6. Aliasing of low-frequency signal due to mixing in capacitive coupling. The resonator is excited with a high-frequency signal at
resonance. The low-frequency signal at frequency ∆f is mixed to f0 ±∆f . The magnitude and relative phase of aliasing factor Γ depends on
the nonlinearities included in the model. (a) Accurate nonlinear model (C(x) = εA/(d−x)).) (b) Nonlinear current and force model with linear
capacitance (C(x) = C0(1 + x/d)). (c) Nonlinear force (F ∼ U2) and linear current (i ∼ ẋ) with linear capacitance (C(x) = C0(1 + x/d)).
(d) Linear force (F ∼ uac) and nonlinear current (i ∼ ẋU) with linear capacitance (C(x) = C0(1 + x/d)).

Fig. 7. Idealized oscillator showing ideal resonator and loop amplifier
that is DC-coupled to the resonator. The noise sources are associated
to the amplifier, but they may well include other noise sources. The
total noise at the resonator input is a sum of thermal un,t and 1/f-
noise un,1/f .

Fig. 7 shows an idealized oscillator model. The oscil-
lator circuit is based on a microresonator (modeled using
the RLC circuit developed in Section II-A), and a tran-
sresistance amplifier (u = Rmi) that provides the positive
feedback to sustain the oscillations. At resonance, Lm and
Cm cancel and the amplifier cancels the resistive losses
due to Rm. Thus, the loop gain is unity, and stable oscil-
lations are sustained. The signal voltage at the resonance
frequency is denoted uac. For this idealized model using a
linear amplifier, the amplitude of signal uac is arbitrary.
In practice it is set by the gain saturation of the loop am-
plifier. Also, because a linear amplifier is assumed in the
analysis, the noise mixing in the amplifier is not included
in the model.

Two noise sources are included: thermal noise un,t and
1/f -noise |un,1/f |2 = |un,t|2ωc/∆ω, where the ωc is the
corner frequency for the 1/f -noise. The noise originating
from the mechanical dissipation Rm is omitted as it can be
included in the thermal noise un,t. For the off-resonance
noise analysis, we write the relationship between the out-
put voltage uout (voltage over the resonator) and the res-
onator current i as:

i =
uout

Z
≈ uout

Rm + j2∆ωLm
. (33)
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Including only the thermal noise source un,t and substi-
tuting uout = u + un,t and u = Rmi into (33) gives:

u

Rm
≈ u + un,t

Rm + j2∆ωLm
. (34)

Solving (34) for u allows writing the noise at the output as:

|un,t
out|2 = |un,t|2

[(
ω0

2∆ωQ

)2

+ 1

]
. (35)

This is the single side-band noise. As the thermal noise
in both side bands can be assumed uncorrelated, the dual
side-band noise is obtained by multiplying (35) by two.

The 1/f -noise is analyzed as follows: The low-frequency
noise voltage un,1/f is up-converted in the resonator to
noise current given by in,1/f = 2Γuacun,1/f . This up-
converted noise current is picked up by the amplifier and
amplified in the feed-back loop. Analysis identical to ther-
mal noise leads to noise voltage at the output given by:

|un,1/f
out |2 = |Γ|2R2

m|uac|2|un,1/f |2
(

ω0

2∆ωQ

)2

.
(36)

This is the single side-band noise. As noise on both side
bands originate from the same 1/f -noise source, they are
correlated, and the dual side-band noise is obtained by
multiplying (36) by four. Combining (35) and (36), sub-
stituting |un,1/f |2 = |un,t|2ωc/∆ω, dividing the result by
two to account the phase and not the amplitude noise, and
normalizing with the signal uac gives so-called “Leeson’s
equation” for dual side-band phase noise:

Sφ =
|un,t|2
|uac|2

[(
ω0

2Q∆ω

)2 (
1 + 2|Γ|2R2

m|uac|2
ωc

∆ω

)
+ 1

]
.

(37)

Eq. (37) gives three regions of operation. Very close to
the carrier the phase noise falls as 1/f3 due to the aliased
1/f -noise. This noise cannot be reduced by increasing the
vibration amplitude as the noise aliasing is proportional to
uac. The 1/f3-region is followed by 1/f2-region in which
thermal noise shaped by the positive feedback dominates.
A constant noise floor is seen. Phase noise in the 1/f2-
region and the noise floor can be lowered by increasing the
signal voltage uac. The minimum obtainable noise floor
is limited by the maximum resonator vibration amplitude
xc given by (12), and the maximum signal voltage can be
written as uMAX

ac = xck/Qη.
In the region in which 1/f -noise dominates, (37) can be

written as:

Sφ =
ω2

0|Γ|2R2
m

2Q2

ωc

∆ω3 |un,t|2. (38)

As the near-carrier noise in microresonators is often
dominated by 1/f -noise, (38) can be used for a quick es-
timation of the obtainable phase noise performance.

Fig. 8. Schematic of the square extensional mode microresonator
showing the mode in extended shape [2] [5].

V. Simulation of the Phase Noise

To verify the analytical noise model, the large-signal-
small-signal(LSSS) method that has been implemented in
a commercial circuit simulation software is used for the os-
cillator noise analysis [19]. The large signal oscillator op-
eration point is obtained with the large signal harmonic
balance (HB) analysis. After the HB analysis, a small sig-
nal noise analysis is carried out using the time varying
operation point. The noise signal is assumed to be suffi-
ciently small as not to affect the oscillator operation point.
Furthermore, only mixing products involving the large sig-
nals are accounted and noise-noise products are neglected.
As noise is much smaller than the carrier, the noise-noise
mixing products are small, and this approximation is jus-
tified.

The oscillator circuit consists of two components shown
in Fig. 7: the resonator and the sustaining amplifier. As
discussed in Section II, the mechanical part of the res-
onator is modeled as a lumped mass-spring-dashpot sys-
tem. For electromechanical coupling, accurate nonlinear
model of the parallel plate capacitor is used [14]. The res-
onator chosen for the simulation is based on published val-
ues for an extensional mode plate resonator [2] [5]. The res-
onator is schematically shown in Fig. 8, and its properties
are summarized in Table I. The critical resonator vibra-
tion amplitude due to electrostatic nonlinearity is 36.0 nm
at Udc = 20 V, which is well below the experimentally
measured mechanical nonlinearity limit of 155 nm. Thus,
the use of a simplified model that ignores the nonlinear
mechanical effects is justified.

To focus on the resonator nonlinearity, a simple current
controlled voltage source (CCVS) is used as an amplifier.
To control the resonator vibration amplitude, the amplifier
is made nonlinear and its output voltage is given by:

v =
R

a
tanh(ai), (39)

where R is the small signal transresistance, i is the in-
put current, and a controls the amplifier saturation point.
Thus, the amplifier gain and saturation point can be ad-
justed independently. At oscillator operation point, the
amplifier saturates and provides transresistance R = Rm.
By adjusting R and a, the amplifier linearity at the op-
eration point can be adjusted. This is used to verify that
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Fig. 9. Simulated (dotted line) and analytical (solid line) phase noise
for different 1/f corner frequencies fc for the 13.2 MHz oscillator in
Table I. As the 1/f-noise is increased, the near-carrier phase noise
slope changes from 1/f2 to 1/f3.

resonator and not the amplifier is responsible for the alias-
ing. For added verification, the oscillator also was simu-
lated with an ideal RLC resonator shown in Fig. 3. With
the capacitive nonlinearity removed from the simulations,
no aliased noise was observed in the simulations, showing
that the resonator and not the amplifier is responsible for
the noise up-mixing. We note that sufficiently linear ampli-
fiers is well realizable in practice, although in commercial
applications requirements for the circuit size and power
consumption may lead a compromise of using a more non-
linear amplifier.

Fig. 9 shows a comparison of simulated and analytical
phase noise (37). The total noise at the resonator input
is un = un,t(1 + fc/∆f) where un,t = 10 nV/

√
Hz. The

resonator drive level is uac = 32 mV or x/xc = 0.28. Very
good agreement is obtained between the theory and sim-
ulations. As the 1/f -noise is increased, the near-carrier
phase noise slope changes from 1/f2 to 1/f3. At 1/f -noise
corner frequency greater than 10 kHz, no 1/f2 region is
observed.

The simulation time was less than 10 s with 2.2 GHz
Pentium 4 computer (Intel Corporation, Santa Clara, CA)
demonstrating the simulation speed advantage over the
time domain simulations that are slow to converge for sys-
tems with a large quality factor.

VI. Experimental Verification

To verify the analytical and simulation results on noise
aliasing, phase noise in an oscillator shown in Fig. 10
was measured. For the phase noise measurement, Agilent
89640A vector signal analyzer (Agilent Technologies, Palo
Alto, CA) was used in phase demodulation mode. As the
dynamic range of the measurement instrument was only
120 dB, 1/f -noise was added to the oscillator to bring

Fig. 10. Series mode micro-oscillator and the measurement set-up
for phase noise. External noise source is used to verify the results on
noise aliasing due to capacitive coupling.

Fig. 11. Measured noise power spectral density for the external 1/f-
noise source. The solid line shows the noise model used in the simu-
lations.

phase noise up to a measurable level. Using an external
noise source also simplifies the measurements as the noise
is well characterized, and the low-frequency noise dom-
inates the oscillator phase noise. Also, as the 1/f -noise
source is connected to the resonator, it is effectively filtered
and only the aliased noise reaches the amplifier. Thus, pos-
sible noise aliasing in the amplifier is effectively eliminated.

Fig. 11 shows the power spectral density (PSD) of the
external 1/f -noise source [20]. The solid line indicates the
noise source model used in the simulations. The resonator
used for the experiment is similar to the one described
in Table I, except that Q = 26 000, d = 170 nm, and
Udc = 15 V. The low quality obtained with the narrow
gap resonator in comparison to Q > 100 000 obtained with
wide gap resonators is believed to be due to contaminants
in the gap. In-situ anneal has been demonstrated to restore
the quality factor [21].

Fig. 12 shows the simulated and measured phase noise
at three different drive levels (uac = 54 mV, uac = 90 mV,
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Fig. 12. Measured (solid lines) and simulated (dashed line) phase
noise for a micro-oscillator at three different drive levels. Also shown
is the analytical result (dotted line) for oscillator noise dominated
by aliasing of 1/f-noise.

and uac = 180 mV or x/xc = 0.070, x/xc = 0.118, and
x/xc = 0.235, respectively). Very good agreement is ob-
tained between the simulations (dashed line) and exper-
iment (solid lines). Moreover, as expected from (37), the
near-carrier noise does not depend on the drive level, and
the phase noises for the measured three drive levels are
barely distinguishable. Also shown is the analytical noise
given by (38) (dotted line) that agrees well in the 1/f3-
region where the noise source has the 1/f behavior. It
should be mentioned that the noise performance in Fig. 12
does not reflect the true performance obtainable with mi-
croelectromechanical systems (MEMS), but the poor per-
formance is a result of excessive 1/f -noise injected in the
oscillator for the ease of measurement.

VII. Discussion

Following the analysis in Section III, the noise aliasing
factor can be reduced by:

• increasing the electrode gap d,
• decreasing the quality factor Q,
• increasing the stiffness k,
• lowering the bias voltage Udc,
• use of linear transducer capacitance C(x) = C0(1 +

x/d),

All these methods also will increase the motional
impedance Rm. Large Rm makes the realization of good
oscillator more difficult and requires larger amplifier gain,
which in turn amplifies the noise as seen in (38). Larger
gap and bias voltage could be used to reduce aliasing while
keeping the electromechanical transduction constant; but,
unfortunately, the large bias voltages are not preferred due
to technological reasons. Linear electrodes such as comb
drives appear attractive for reducing the aliasing but also

yield weaker electromechanical transduction than parallel
plate electrodes. Grounded resonator with separate drive
and pick-up electrodes can be used to eliminate the direct
current aliasing path (Section III-A) but it does not elim-
inate the force aliasing (Section III-B) that is the dom-
inant noise aliasing mechanisms. As no panacea appear
for removing the aliasing, effort should be focused on re-
ducing the low-frequency noise. Low-noise loop amplifiers
together with high-pass filters may be effective in reducing
the noise appearing at the resonator input, thus lowering
the oscillator near-carrier noise.

This paper has analyzed the noise aliasing in a res-
onator. In some practical oscillator implementations the
noise aliasing in the amplifier also may contribute to the
near-carrier noise, and both the amplifier and resonator
nonlinearity needs to be accounted for an accurate model
of oscillator phase noise. Although this is beyond the scope
of this paper’s focus on resonator nonlinearity, the design
insights and analysis tools presented are applicable for pos-
sible cases of combined amplifier and resonator nonlinear-
ity.

VIII. Conclusions

The capacitive transduction commonly used in mi-
croresonators is shown to result in the aliasing of 1/f -
noise to carrier side-bands and can significantly affect the
oscillator phase noise performance. Consequently the near-
carrier noise is expected to be worse for capacitively actu-
ated resonators than for similar piezoelectrically actuated
resonators. A detailed analysis of the noise-mixing mecha-
nisms was carried out, and the capacitive force nonlinear-
ity was found to be the dominant up-mixing mechanism
in electrostatic transduction. An analytical model of oscil-
lator phase noise model was developed and verified with
simulations. The analytical model and simulations were
compared to the experimentally measured micro-oscillator
phase noise, and excellent agreement with the theory and
experimental results was obtained. Thus, the analytical
and simulation methods presented can be used for quanti-
tative prediction of noise in micro-oscillators.

Acknowledgment

We thank Jaakko Juntunen at Aplac Solutions, Inc.,
for technical support and Jyrki Kiihamäki for sample fab-
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