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Abstract—Three electrostatic transduction methods are
analyzed for a micromechanical, longitudinal mode, beam
resonator. The conventional parallel plate transducer
placed at the location of maximum displacement is com-
pared to two solid, dielectric transducers internal to the
resonator. Although the solid dielectric offers higher per-
mittivity than the free-space-filled transducers, the unfa-
vorable locations of the internal transducers reduce or even
remove the performance advantage of the higher permittiv-
ity.

I. Introduction

Micromechanical resonators have been demon-
strated to offer high quality factors, Q > 100, 000

at 10 MHz [1] and Q > 1, 000 at 1 GHz [2], comparable
to those of macroscopic resonators such as quartz crys-
tals and surface acoustic wave (SAW) resonators, and are,
therefore, a potential alternative to the size-consuming,
off-chip filters and oscillators. Electrostatic coupling to mi-
croresonators has been of considerable interest due to the
compatibility with integrated circuit fabrication processes
because no special materials, such as piezoelectrics, are re-
quired. Unfortunately, the electrostatic coupling is rather
ineffective for high-frequency resonators. As a result, the
typical resonator impedances are impractically high (over
100 kΩ at gigahertz frequencies). In order to obtain usable
impedance levels, very small electrode gaps (< 100 nm)
are desired. The lower limit to the gap size is set by fab-
rication challenges, the minimum resonator vibration am-
plitude for sufficient energy storage, or nonlinear effects
such as intermodulation distortion arising from the inverse
relationship between the transducer capacitance and the
electrode gap [3].

Usually, the electrode gap has been free space, which
offers nearly perfect acoustic isolation due to a large
impedance discontinuity. Recently, the use of high permit-
tivity materials have been proposed as a way to enhance
the electrostatic coupling [4], [5]. In a typical configura-
tion, filling the electrode gap with a solid material would
introduce acoustic losses as the solid material does not
provide the ideal impedance mismatch [6]. Nevertheless,
improvement in the transducer coupling coefficient can be
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achieved, at the cost of lowered quality factor. In [7], the
introduction of ε = 7.8ε0 dielectric and reduction of the
gap size by factor of four, lead to an 8x improvement in
motional impedance—a significant but small improvement
in comparison to 7.82 · 44 > 104x improvement expected
for an ideal transducer with no change in the quality factor.
As an alternative to the typical configuration, electrostatic
transduction using solid dielectric internal to the resonator
[4] or on top of the resonator [5] have been proposed.

In this paper, an analytical model for the different trans-
duction methods is developed, and the transducers are
compared for a beam resonator. It is found that, as the
traditional parallel plate transducer affects the optimal lo-
cation of the largest resonator displacement, it generates
comparatively large force and current. The solid, “inter-
nal”, transducer placed in the middle of the resonator re-
sults in relatively poor performance as the transducer acts
in the small displacement region. Transducers placed on
top of the resonator act on the entire beam, but because
the actuation is based on the Poisson’s effect, the trans-
duction efficiency also is decreased.

II. Lumped Model for Forced Vibrations

Fig. 1 shows an infinitesimal beam element with length
dx and cross-sectional area A [9], [10]. The beam can de-
form without external constraints in z and y directions
(stresses Tz = Ty = 0). The forces acting on the element
are the external excitation force fe and the stress force
fT = Y A(∂u/∂x), where u is the material deformation
and Y is the Young’s modulus. Thus, the Newton’s equa-
tion of motion for the infinitesimal element is:

ρA
∂2u

∂t2
dx = fT |x0+dx − fT |x0 + fe|x0+dx − fe|x0

= Y A
∂2u

∂x2 dx +
∂fe

∂x
dx, (1)

where ρ is the density. Dividing (1) by dx and including the
damping [11] gives the wave equation for the longitudinal
beam vibrations1:

ρA
∂2u(x, t)

∂t2
− bA

∂3u(x, t)
∂t∂x2 − Y A

∂2u(x, t)
∂x2 =

∂fe(x, t)
∂x

.
(2)

where (2) is the-well known wave equation for longitudi-
nally vibrating beams [9], [10]. The implicit assumption of
using Young’s modulus in (2) is that the beam is allowed
to deform freely in y- and z-directions.

1This is a one-dimensional (1-D) version of the 3-D wave equation:
where T = c : S + Te and Te is the electric field generated stress
(compare to T = c : S + e · E for piezoelectric materials) [11].
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Fig. 1. Diagram showing forces and displacements for an infinitesimal
beam element having length dx and cross-sectional area A.

Fig. 2. Longitudinal mode beam resonator [8].

As an example, we consider a beam with a cross-
sectional area A = WH and a length L shown in Fig. 2.
Assuming that the quality factor Q of the beam resonator
is sufficiently large to make the excitation of the higher-
order modes negligible, the solution to (2) may be approx-
imated by the first mode:

u(x, t) = X(t) sin kx, (3)

where k = π/L is the wave number and X(t) is the motion
at the beam end. Substituting (3) into (2) gives:

ρAẌ(t) sin kx + bAk2Ẋ(t) sin kx + Y Ak2X(t) sin kx =
∂f(x, t)

∂x
, (4)

where the dot denotes the time derivative. Multiplying (4)
with sinkx and integrating over the beam length leads to:

ρAL

2
Ẍ(t) +

bALk2

2
Ẋ(t) +

Y Ak2L

2
X(t) = F (t),

(5)

where we have defined:

F (t) =
∫ L/2

−L/2

∂fe(x, t)
∂x

sin kxdx. (6)

(a)

(b)

Fig. 3. Lumped mechanical and electrical model for the resonator.
(a) Lumped mechanical resonator. (b) Electrical equivalent circuit
for the resonator in Fig. 3(a).

Recognizing the effective mass, the damping coefficient,
and the spring constant as:

M = ρAL/2,

γ = bALk2/2,

K = Y Ak2L/2 = π2Y A/2L,

(7)

leads to:

MẌ(t) + γẊ(t) + KX(t) = F (t). (8)

The quality factor is defined as Q =
√

KM/γ. Thus,
the mechanical resonator properties M , γ, and K do not
depend on the transducer force fe, and only the force F is
dependent on transducer location.

III. Electrical Equivalent Circuit

A common scenario for actuation of microresonators is
that the transducer is located at the resonator edge, and
the motion X directly modulates the parallel electrode ca-
pacitance C as illustrated in Fig. 3(a). In this case, the
lumped force acting on the resonator can be obtained di-
rectly from:

Fe =
∂

∂X

(
1
2
CV 2

tot

)
, (9)

where Vtot = Vdc + v(t) is the sum of direct current
(DC)-bias and alternating current (AC)-voltage v(t) at
frequency ω. For small electrode displacements, the time
harmonic force at ω is:

Fe = ηv, (10)
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where the electromechanical transduction factor has been
defined as:

η =
ε0Ael

d2 Vdc, (11)

here ε0 is the permittivity of free space, Ael is the total
electrode area (for the beam resonator example, Ael =
2WH as the beam is actuated at both ends), and d is the
initial electrode gap. The current through the electrode is:

i =
∂ (CVtot)

∂t
≈ ∂C

∂t
Vdc + C0

∂v

∂v
= ηẊ + C0v̇.

(12)

The second term is recognized as the normal AC-current
through the capacitor, and the first term is the motional
current im = ηẊ due to the time-varying capacitance.

By combining (8), (10), and (12), an electrical equiva-
lent for the resonator shown in Fig. 3(b) can be derived.
Here, the circuit parameters are:

Rm = γ/η2 =
√

KM/Qη2,

Cm = η2/K, and

Lm = M/η2.

(13)

The important observation is that, to obtain a small
motional resistance Rm, a large electromechanical trans-
duction factor η is needed. In the following section, the
transduction factor is evaluated using the wave equation
approach for three different capacitive coupling methods.

IV. Electrostatic Coupling Coefficients

Fig. 4 shows three different electrode configurations.
The conventional parallel plate transducer in Fig. 4(a)
has the actuating electrodes located at the beam ends.
The “internal transducer” in Fig. 4(b) is located in the
beam center and is filled with a solid dielectric material.
The “Poisson’s effect transducer” in Fig. 4(c) has the solid
transducer on top of the beam. In this section, the three
transducers are compared in terms of electromechanical
coupling coefficients.

A. Parallel Plate Transducer

The electromechanical transduction for the parallel
plate transducer was derived using the lumped model in
Section III. In order to introduce the distributed wave for-
malism required to account for the transducer location,
the beam in Fig. 4(a) is considered. The electromechani-
cal coupling to the beam is done by the two parallel plate
transducers with area WH, gap d, permittivity εp, and bias
voltage Vdc at the beam ends. Considering an infinitesimal
beam element at the right beam end, the force on the right
side is:

fe|L
2

=
∂C

∂x
Vdcv =

εpWH

d2 Vdcv, (14)

(a)

(b)

(c)

Fig. 4. Comparison of three different electrostatic transducers.
(a) Parallel plate transducers at beam ends. The transducers have
areas A = WH and gaps d. (b) Internal transducer in the beam
center. The transducer has area A = WH and a gap d (transducer
edges are at −d/2 and d/2). (c) Poisson’s effect transducer on top of
the beam. As the transducer is actuated in the thickness direction, it
transforms motion to lateral deformation due to the Poisson’s effect.
The transducer has area A = WL and thickness h.

and the excitation force on the left side of the infinitesimal
beam element is fe|L

2 −∆x = 0. Thus, the gradient of the
force is:

∂fe

∂x
= lim

∆x→0

fe|L
2

− fe|L
2 −∆x

∆x
=

εpWH

d2 Vdcvδ(x − L/2),
(15)

where δ is the delta-function. At the left end, the force
has the same magnitude but opposite direction. Thus, the
total force gradient acting on the beam is:

∂fe

∂x
=

εpWH

d2 Vdcv(δ(x − L/2) − δ(x + L/2)).
(16)

Alternative formulation for the force fe is obtained by
noting that the electrostatic pulling force acting on the
beam ends results in tensile force (stress) inside the beam
given by:

fe =
εpWH

d2 Vdcv, x ∈ [−L/2, L/2], (17)

where (16) and (17) give mathematically equal results.
This is similar to the piezoelectric transducers in which
the coupling may be modeled as distributed stress acting
in the transducer volume or lumped force at the transducer
edge [12]. Substituting (16) or (17) into (6) gives:

Fp = ηpv, (18)
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where:

ηp = 2
εpWH

d2 Vdc. (19)

As expected, the transduction factors given by (19) and
(11) are the same. The motional current is:

im =
∂C

∂t
Vdc = 2

∂

∂t

(
εpWH

d − X

)
Vdc ≈ ηpẊ.

(20)

B. Internal Transducer

Fig. 4(b) shows a beam with an internal actuator placed
at the nodal point [4]. For simplicity, we assume that the
actuator material has the same density and Young’s modu-
lus as the beam and, therefore, does not affect the resonant
frequency and mode shape. The capacitive force acting in
the transducer area is:

fe = − εiWH

d2 Vdcv, x ∈ [−d/2, d/2], (21)

where εi is the permittivity for the internal transducer
material. Substituting (21) into (6) gives:

Fi = ηiv, (22)

where:

ηi = −2 sin
(

kd

2

)
εiWH

d2 Vdc ≈ −πd

L

εiWH

d2 Vdc.
(23)

The approximation is valid for πd/L � 1. In writing
(23), the terms have been grouped to facilitate comparison
to the parallel plate transduction coefficient given by (19).
The motional current is:

im =
∂C

∂t
Vdc =

∂

∂t

(
εiWH

d + 2X sin(kd/2)

)
Vdc ≈ ηiẊ.

(24)

C. Poisson’s Effect Transducer

Fig. 4(c) shows a beam with a transducer on the top
surface [5]. As the transducer is a thin film on top of the
resonator, it may deform in the z direction without exter-
nal constraints, but the lateral movement is constrained
by the beam.

The main force generated by the electric field over the
transducer is in the thickness direction; but, due to the
Poisson’s effect, the thin film also will have lateral stresses.
This lateral film stress will actuate the beam in the length
direction. For simplicity, we assume that the actuator does
not change the beam resonant frequency or the mode
shape; the actuator material is assumed to have the same
Young’s modulus and density as the beam, or to be suffi-
ciently thin.

The capacitive force generates stress within the thin
film in the z direction given by:

Tz =
εν

h2 Vdcv, (25)

where h is the transducer thickness. Due to the Poisson’s
effect, the stress in the z direction generates stress also in
the x and y directions. The upper limit for the stress in
the film in the x direction:

Tx =
ν

1 − ν
Tz, (26)

is obtained if the film is firmly anchored to the resonator
and cannot freely deform laterally (Sx = Sy = 0). This is
a good approximation for a flexible or thin film. If lateral
deformations were allowed, the stress in the x direction
would be lowered. The validity of the approximation Sx =
Sy = 0 is discussed in Section V in which the analytical
expressions are compared to the finite-element results.

The resulting force that actuates the beam can be ob-
tained by multiplying the stress in the film by the film
cross-sectional area A = Wh leading to:

fe = TxWh, x ∈ [−L/2, L/2]. (27)

Substituting (27) into (6) gives:

Fν = ηνv, (28)

where:

ην = 2
ν

1 − ν

h

H

ενWH

h2 Vdc. (29)

For given vibration amplitude, the strain in the x di-
rection is Sx = (∂ux/∂x) = Xk cos(kx). As the film can
deform freely in the z direction, the strain Sx also will gen-
erate strain in the z direction. Assuming no y-displacement
gives the upper limit for the transducer strain in the z di-
rection:

Sz = − ν

1 − ν
Sx. (30)

The change in capacitance per unit length dx is:

∂dC

∂t
=

∂

∂t

(
ενWdx

h

)
= − ενWdx

h

ḣ

h
. (31)

Recognizing:

ḣ

h
= Ṡz = − ν

1 − ν
Ṡx = − ν

1 − ν
Ẋk cos(kx),

(32)

and integrating over the beam length gives the motional
current:

im =
∂C

∂t
Vdc =

∫ L/2

−L/2

ενW

h
Ṡxdx = ηνẊ. (33)

In deriving the transduction coefficient, the ratio
ν/(1 − ν) was based on simplified assumptions of lateral
deformations and gives the upper limit for the coupling
coefficient. More detailed considerations and/or finite-
element modeling may be required if accurate geometrical
dependency is needed, especially if the film cannot be con-
sidered thin. However, as shown by finite-element method
(FEM) analysis in Section V, the ratio ν/(1 − ν) is suffi-
ciently accurate for estimating the magnitude and upper
limit of the coupling.
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TABLE I
Ratio of Transduction Coefficients.

Ratio ηi/ηp ην/ηp

Expression π
2

d
L

εi
εp

ν
(1−ν)

d2

hH
εν
εp

Analytical 0.0082 0.067
FEM 0.0082 0.046

V. Comparison of Transducers and FEM

Verification

In Section IV, three different coupling methods were
considered; and it was found that one parameter, the elec-
trostatic transduction factor, fully characterizes the trans-
ducers. Table I shows a comparison of the electrostatic
transduction coefficients. As a specific example, a beam
resonator with L = 300 µm, H = 10 µm, h = d = 200 nm,
εp = ε0, εi = εν = 7.8ε0 corresponding to silicon nitride,
and ν = 0.3 is considered.

The analytical results are compared to numerical finite-
element (FEM) results obtained with ANSYS software2.
The frequency-domain (“harmonic”) 3-D FEM model is
based on isotropic “solid45” elements, and a total of 5436
nodes were used in the simulations. Full harmonic-response
solution was used to accurately simulate the vibration at
the resonance. The fringing-field effects were ignored in
the simulations as they can be assumed insignificant for
the narrow-gap devices. To verify the accuracy, the simu-
lations also were run with an increased node count of 36421
(volume of the elements reduced by a factor of eight). The
difference in the results was less than 1%, indicating a good
numerical convergence.

For the ratio of the internal and parallel plate transduc-
ers, one obtains ηi/ηp = 0.0082 both analytically and with
FEM. The small ratio is due to the conventional parallel
plate transducer affecting the optimal location of maxi-
mum resonator displacement; the internal transducer is
located in the small displacement region. This unfavorable
ratio may be improved by using several internal transduc-
ers in parallel and/or higher permittivity transducer ma-
terial such as titanium dioxide with ε ∼ 85ε0. However, it
appears that the internal transducer does not offer a clear
advantage over the parallel plate transducer.

For the Poisson’s effect, one obtains the analytical and
FEM results of ην/ηp = 0.067 and 0.046, respectively, for
the force η in (28). The FEM result is about 30% smaller
than the analytical result as the ratio ν/(1 − ν) gives the
upper limit for the coupling. Incidentally, if ν/(1 − ν) is
changed to ν, the agreement is within 3% for the force
coupling coefficient. The simulated current coupling coef-
ficient in (33) was slightly different (0.056). The differing
values of the coupling coefficients for the force and current
indicate that the 1-D model is not sufficient for accurate
design and 3-D simulation or model is needed. However,

2ANSYS, Inc., www.ansys.com.

the simple 1-D model is an excellent order-of-magnitude
estimate for the coupling coefficients.

The Poisson’s effect coupling gives equal performance
as the parallel plate transducer if the transducer height is
h = 13 nm or roughly 15 times smaller than the paral-
lel plate transducer gap d with the associated decrease in
the transducer linearity. We note that the Poisson’s effect
transducer may be easier to manufacture than the parallel
plate transducer of equal performance as it is relatively
easy to deposit a thin film in comparison to defining sub-
micron vertical gaps. However, the asymmetric excitation
affecting only the top of the beam may lead to excitation
of flexural modes. Also, any instability in the transducer
or transducer-resonator interface leads to degradation of
the long-term resonator stability.

We note that the performance of the conventional par-
allel plate transducer may be improved by the introduc-
tion of higher permittivity dielectric in the transducer gap
[7]. The full analysis of solid-dielectric transducer placed
in the location of maximum displacement is, however, be-
yond the scope of this paper as this would require model-
ing the counter electrode motion and the resulting losses
in efficiency.

VI. Conclusions

The electrostatic transduction was considered for a spe-
cific example of a micromechanical beam resonator. The
conventional parallel plate transducer is seen to offer rel-
atively good performance as the electrostatic force affects
the optimal location of maximum displacement. The in-
ternal transducer with solid dielectric is seen to offer poor
performance due to the force being located in the small-
displacement region. The Poisson’s effect transducer of-
fers performance comparable to the parallel plate trans-
ducer with gap d provided that the film thickness is
h ≈ ενd2/εpH. Thus, for typical values, the film thick-
ness should be a factor of 10 smaller than the gap in the
parallel plate transducer to reach similar performance.
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“Square-extensional mode single-crystal silicon micromechani-
cal resonator for low phase noise oscillator applications,” IEEE
Electron. Device Lett., vol. 25, no. 4, pp. 173–175, Apr. 2004.

[2] J. Wang, Z. Ren, and C. T.-C. Nguyen, “1.156-GHz self-aligned
vibrating micromechanical disk resonator,” IEEE Trans. Ultra-
son., Ferroelect., Freq. Contr., vol. 51, no. 12, pp. 1607–1628,
Dec. 2004.

[3] A. T. Alastalo and V. Kaajakari, “Third-order intermodulation
in microelectromechanical filters coupled with capacitive trans-
ducers,” J. Microelectromech. Syst., vol. 15, no. 1, pp. 141–148,
Feb. 2005.

[4] S. A. Bhave and R. T. Howe, “Internal electrostatic transduction
for bulk-mode MEMS resonators,” in Proc. Solid State Sensor,
Actuator Microsyst. Workshop, 2004, pp. 59–60.

[5] S. A. Bhave and R. T. Howe, “Silicon nitride-on-silicon bar res-
onator using internal electrostatic transduction,” in Proc. 13th
Int. Conf. Solid-State Sens. Actuators, 2005, pp. 2139–2142.



kaajakari et al.: electrostatic transducers for micromechanical resonators 2489

[6] A. Alastalo, T. Mattila, and H. Seppä, “Analysis of a MEMS
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