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ABSTRACT

The fundamental performance limit of single-crystal silicon
resonators set by device nonlinearities is characterized. Us-
ing Leeson’s model for near carrier phase noise, the non-
linearity is shown to set the scaling limit in miniaturizing
oscillators. A circuit model based on discretization of dis-
tributed mass and nonlinear elasticity is introduced to accu-
rately simulate the large amplitude vibrations. Based on pub-
lished data for the third-order silicon stiffness tensor, the fun-
damental material nonlinearity limit is estimated. This the-
oretical limit is compared to measured nonlinearities in bulk
acoustic wave (BAW) micromechanical resonators. The ma-
terial set and measured nonlinearities are of same order-of-
magnitude showing that the maximum vibration amplitude of
studied BAW microresonators is near the fundamental limit.
The maximum strain for single-crystal silicon resonators set
by hysteresis limit is estimated to be 2 · 10−3 (fracture limit
10−2), which corresponds to the maximum energy density
of Em/V = 3 · 105 J/m3. This value is at least two orders-
of-magnitude higher than for shear-mode quartz resonators,
which partially compensates for the small size of MEMS
components.
Keywords: nonlinear, phase noise, resonator, RF-MEMS

I. INTRODUCTION

Fast market growth for portable communication devices has
lead to a wide interest in oscillators having small size and
low power consumption. Mechanical quartz resonators pro-
vide exceptionally high precision and stability. However, the
macroscopic size and low integratibility with IC electronics
are the major drawbacks of quartz crystals. Micromechanical
silicon resonators are an interesting alternative due to their
compact size and feasibility of integration with IC technolo-
gies. Unfortunately, the small size of MEMS resonators also
results in lower energy storage capacity. Therefore the mi-
croresonators have to be driven close to the nonlinearity limit
for sufficient performance as demonstrated by our 12 MHz
bulk acoustic wave (BAW) oscillator (Q = 180000) [1]. This
is in contrast with quartz resonators that due to their large size
can more easily provide sufficient signal-to-noise ratio with-
out being driven close to the nonlinear limit.
For BAW resonators both the mechanical and capacitive non-
linearities can be significant. While the capacitive and ge-
ometrical nonlinearities are well-understood [1, 2], little in-
formation exists about the material induced mechanical non-
linearity in MEMS resonators. Although the silicon material
nonlinearity is small and can be ignored in many MEMS ap-
plications, it becomes important in determining the maximum
vibration amplitude of high quality factor BAW resonators.

In this paper, the effect of mechanical nonlinearity in dis-
tributed mass and elasticity is accurately modeled with a
chain of discrete elements. The nonlinearity is introduced as
first- and second-order displacement dependent corrections to
the spring constant following from the large deformation the-
ory of anisotropic solids. The analysis of measured resonator
transmission curves shows that the maximum energy density
for the studied BAW devices is close to the intrinsic material
limit.

II. NONLINEARITY AND PHASE NOISE IN

MICRO-OSCILLATORS

To show the importance of nonlinearities in microresonators,
it is useful to consider phase noise in an ideal oscillator. Lee-
son’s model gives the phase noise-to-carrier ratio for a small
offset ∆ω from the carrier frequency ω0 as

L(∆ω) = 10 · log

[
2kT

Estored

Q
ω0

(
1+
(

ω0

2Q∆ω

)2
)]

, (1)

where Q is the resonator quality factor and Estored is the en-
ergy stored in the resonator tank [3, 4]. The first term in the
brackets in Equation (1) gives the noise floor and second term
gives the near carrier noise. To decrease the near carrier noise,
either the tank energy or the quality factor can be increased.
However, for a good noise floor the tank energy should be
increased but the quality factor decreased. Thus a high qual-
ity factor alone does not enable good oscillator and to obtain
good overall phase noise, the vibration energy should be max-
imized.
The amount of energy that can be stored in a microresonator
is limited by device nonlinearities. The maximum vibration
energy is

Emax
stored =

1
2

kX2
C, (2)

where k is the mechanical spring constant and XC is the criti-
cal vibration amplitude at the hysteresis limit set by mechan-
ical nonlinearity. These scale as

k ∼ l
XC ∼ l/

√
αQ,

(3)

where l is the characteristic device dimension and α is the
geometry and material dependent nonlinearity constant [5].
Thus at the nonlinearity limit, the maximum vibration energy
is Emax

stored ∼ l3/αQ and the phase noise-to-carrier spectrum is

L(∆ω) ∼ α
l3

(
Q2

ω0
+

ω0

4∆ω2

)
. (4)

Equation (4) indicates that if the power output of the oscillator
is limited by the device nonlinearities, the near carrier noise
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Table 1. Calculated values for the nonlinear engineering
Young’s modulus

Y0[GPa] Y1 Y2

1–D Beam ([100]) 130 0.65 -4.6
2–D Plate 181 -2.8 -8.3

does not depend on the quality factor and the noise floor de-
grades as a square of the tank quality factor. Thus, the device
nonlinearities set the fundamental scaling limit for microres-
onators and the small size cannot be compensated with a high
quality factor. Macroscale resonators do not suffer from this
problem as they are large enough to store sufficient energy
without being driven to the nonlinear limit.

III. MECHANICAL NONLINEARITY IN SILICON

BAW RESONATORS

Large amplitude vibrations can lead to two types of anhar-
monic effects of mechanical origin: geometrical and material
nonlinearity. Geometrical effects have been studied in flexu-
ral resonators. For example clamped-clamped beams demon-
strate increasing tension with displacement leading to spring
hardening in the restorative force [2]. For bulk acoustic wave
resonators, however, the geometrical nonlinearity is not dom-
inant and material effects have to be included. To include
these nonlinearities large deformation theory has to be used.
The Cauchy stress due to finite deformation including both
the geometrical (area and volume change) and material stiff-
ness effects is

σi j(X) =
ρX

ρa

∂Xi

∂ak

∂Xj

∂ak
(ci jklηkl + ci jklmnηklηmn), (5)

where X is the particle coordinate at finite deformation, a is
the undeformed state, ρX and ρa are the deformed and un-
deformed densities, ci jlk and ci jlmn are the second and third
order stiffness tensors, and ηkl is the Lagrangian strain [6].
The third-order stiffness tensor has been measured using ul-
trasonic wave measurements [7]. This data and Equation (5)
enable computation of nonlinear strain dependent engineer-
ing Young’s modulus

Y =
T
S

= Y0(1+Y1S +Y2S2), (6)

where T is the force divided by the initial undeformed area
(engineering stress), S = ∂u/∂x is the displacement gradi-
ent with respect undeformed coordinates (engineering strain),
and Y1 and Y2 are the first- and second-order corrections re-
spectively.
Calculated values for nonlinear Young’s modulus are tab-
ulated in Table 1 with values in [100]-direction agreeing
with published analytical results in reference [6]. Unfor-
tunately, no information exist on the effect of doping on
the anharmonic stiffness tensor. Thus, the calculated val-
ues may not be accurate for the highly boron doped silicon
(NB ≈ 5 ·1018 1/cm3) used for the microresonators utilized in
this study. Nevertheless, the literature data allows an order-
of-magnitude comparison of measured resonator nonlineari-
ties and fundamental material limits.

The critical strain amplitude at the hysteresis due to first- and
second-order mechanical nonlinearity corrections can be ap-
proximated by

SC1 = α
√

1
Y 2

1 Q

SC2 = β
√

1
|Y2|Q

, (7)

where α =
√

16/5
√

3 and β =
√

8/3
√

3 [5]. Equation (7)
allows an order-of-magnitude estimation of the hysteresis
limit for BAW resonators. Based on the computed values
for Young’s modulus, we estimate for 2–D plate resonator
SC2 ≈ 1.3 · 10−3 and SC3 ≈ 1.2 · 10−3. This estimate shows
that both the correction terms can be significant.

IV. MODELING OF NONLINEAR VIBRATIONS

To accurately simulate the nonlinear vibrations, the dis-
tributed nature of stress and strain has to be included in the
model. In our devices the resonator modal shape is to a good
approximation sinusoidal and the strain is the highest in the
center. A full distributed model would be computationally
very demanding and therefore the continuum is approximated
with a chain of masses connected with nonlinear springs. As
shown in Figure 1, a good approximation is obtained with rel-
atively small number of masses. A four mass system appears
to be a good compromise between accuracy and simulation
speed and is used in this paper. The relationship between
nonlinear Young’s modulus and spring constants is

k(x) = k0(1+ k1x+ k2x2)
k0 = AY0

L ,k1 = Y1
L , and k2 = Y2

L2 ,
(8)

where x is the spring stretching, A is the area, and L is the
length. The mass-spring chain model has been implemented
as an electrical-equivalent model in RF-simulation program
Aplac. In addition to mechanical nonlinearity, the equiva-
lent circuit includes an accurate model of the capacitive cou-
pling [2]. Displacement versus frequency responses to a sinu-
soidal excitation are simulated using harmonic balance anal-
ysis.

V. MEASURED NONLINEAR VIBRATIONS

To characterize the nonlinear vibrations in single-crystal sil-
icon micromechanical resonators, two bulk acoustic wave
(BAW) resonator designs shown in Figure 2 were measured.
The devices were fabricated by etching a SOI wafer. Both
the 1–D and 2–D BAW resonators show high quality factors
exceeding 100000 and operate at frequency of 11.7 MHz and
13.1 MHZ respectively. Further details of these resonators
are provided in references [1] and [8].
The measurements were done using a HP4195A network
spectrum analyzer with a JFET preamplifier with low (100 Ω)
input impedance to rule out resonator loading by the mea-
surement set-up. Figure 3 shows the measured and simulated
transmission amplitudes |S21| for the SOI 2–D BAW device
shown in Figure 2. At higher drive levels, the resonator peak
becomes sharper and shifts down in frequency. This tilting of
the peak to the left is to be expected with the first-order non-
linearity Y1 (positive or negative) and with a negative second-
order nonlinearity Y2. A positive second-order nonlinearity
would cause shifting of the peak to a higher frequency (spring
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Figure 1. Equivalent mechanical model used in Aplac circuit simulator. Material nonlinearity is included as nonlinear
springs. As the number of discrete elements is increased, the frequency difference ∆ f / f0 between discrete and continuum
model approaches zero.
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Figure 2. Schematic of the 1–D and 2–D resonators used in measuring nonlinearities in single-crystal BAW resonators.

hardening). Increasing the excitation signal causes further in-
crease in nonlinearity and eventually the transmission signal
shows discontinuity due to frequency hysteresis.

The measured and simulated data shown in Figure 3(a) corre-
spond to the best fit values Y1 = −1.4 and Y1 = −4.0. These
experimentally obtained values are about 50% lower than es-
timated for a solid plate. This discrepancy can probably be
attributed to etch holes in the plate that lower the effective
Young’s modulus. The maximum vibration amplitude was
220 nm, which corresponds to average strain of 1.4 · 10−3

and maximum strain of 2 · 10−3. This corresponds to max-
imum stored energy of 0.35 µJ or average energy density of
Em/V = 3.4 ·105 J/m3.

To quantify the effect of nonlinearity due to capacitive cou-
pling, the transmission was also simulated without mechani-
cal nonlinearity in the model. As the capacitive nonlinearity
increases as a square of bias voltage, it is insignificant at low
bias voltages but becomes important at high bias voltages [1].
This is evident in Figure 3(b), where simulation without me-
chanical nonlinearity show no excitation amplitude depen-

dence at 50 V bias voltage. Higher bias voltages show capac-
itive spring softening effect, but even at Ubias = 100 V this
is not enough to explain the observed nonlinearity. A further
proof that the mechanical nonlinearity dominates at low bias
voltages is obtained by looking at the bias and excitation volt-
age product Ubias ·uac at the hysteresis limit. As the vibration
amplitude is proportional to Ubias · uac this remains constant
if the mechanical nonlinearity dominates. Our measurements
for the 2–D plate clearly show that Ubias ·uac is approximately
constant indicating that mechanical nonlinearity dominates.

As both the first- and second-order nonlinearity can cause
similar distortion on the transmission curve, there is uncer-
tainty about the relative contribution of Y1 and Y2. In principle
the nonlinearity could also be characterized by looking at the
vibration spectrum. This would allow differentiating between
the first- and second-order effects. Unfortunately due to ca-
pacitive coupling, even linear vibrations produce harmonics.
In our devices, the harmonics due to nonlinear vibrations are
below the level of harmonics due to capacitive coupling and
thus measuring the current spectrum does not yield informa-
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(a) Measured (o) and simulated (-) transmission |S21| curves with material
nonlinearity included in the model (Y1 = −1.4 and Y1 = −4.0). Highest
excitation level results in discontinuity (the sweep shown is from higher to
lower frequency).

��

��

�|

�

|

�

�

£
|
�
£��

�
	

�

����}|���

>��������

��������|��

>��������

����}|���

>���������
�����������

>���������

������$� #/ _�����$�

(b) Measured (o) and simulated (-) transmission |S21| curves without mate-
rial nonlinearity included in the model. Capacitive spring softening alone
does not explain the frequency shift.

Figure 3. Measured and simulated transmission curves for 2-D plate ( f0 = 13.1 MHz) with nonlinear capacitive and mechani-
cal effects. The maximum vibration amplitude at the hysteresis limit Xc was 220 nm independent of bias showing that hysteresis
limit is due to mechanical and not capacitive nonlinearity.

tion about the mechanical nonlinearity.
The measured 1–D beam BAWs showed similar behavior but
the measured values showed larger variation from device to
device. This can probably be attributed to the larger surface-
to-volume ratio that causes small geometrical or surface de-
fects to have a larger effect. Also, the mechanical spring con-
stant for 1–D beams is much lower than for the 2–D plate
causing the capacitive nonlinearity to be comparatively more
significant. With capacitive nonlinearity shadowing the me-
chanical nonlinearity, accurate absolute values for the nonlin-
ear mechanical spring constant could not be obtained. Based
on our measurements, we estimate upper limits of |Y1| ≤ 3
and |Y2| ≤ 10 for the correction terms. Thus, even for the 1-D
beam BAWs, we can conclude that the measured mechanical
nonlinearities are not significantly larger than estimated from
the theory and the devices can be operated near the funda-
mental strain limit.
The obtained energy density limit Em/V = 3.4 ·105 J/m3 for
silicon micromechanical resonator can be compared to the
hysteresis limit of Em/V = 500 J/m3 for an AT-cut quartz
crystal resonator [9]. Thus at least two orders-of-magnitude
higher energy density can be achieved with silicon microme-
chanical resonators than with shear-mode macro quartz de-
vices. This can partially compensate for the small size of
RF-MEMS oscillators.

VI. CONCLUSIONS

Nonlinearities in microresonators were identified as the limit
for attainable phase noise performance. A model based on
a discretization of continuum equations was introduced for
the accurate simulation of mechanical nonlinearities. The
measured hysteresis strain limit for single-crystal silicon res-
onators was 2 · 10−3. This was shown to be close to the
fundamental material nonlinearity giving upper of Em/V =

3.4 · 105 J/m3 for the energy storage density in silicon mi-
croresonator.
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