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This tutorial covers how to develop electrical equivalent circuits for micromechanical resonators. After
reading this you should be familiar with terms like effective mass or motional resistance – and some other
RF-MEMS1 jargon. This tutorial is started with an example analysis of a beam resonator. After developing
an equivalent circuit for it, a more general approach to electrical equivalents given.

Figure1 shows a half wavelength beam resonator developed for reference oscillator applications [1].
Before going into more detailed analysis, we make a few qualitative observations. First, the beam ends
move in the opposite direction and the beam is acnored from the middle which is the vibrational nodal point.
Secondly, the beam is actuated symmetrically using both electrodes and is listened from the center anchor
making the resonator a two port device. Applying voltage over the resonator results in ac-current flowing
through the device. This current can be divided into two parts: “normal” currentiac due capacitive current
path between beam and electrodes and motional currentimot due to motion of the beam end.
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Figure 1. Schematic of longitudinal mode beam resonator and the vibrational displacement (mode
shape) [1].

Vibration mode
To analyze the beam resonator in Figure1, we start with Hooke’s equation for stress and strain

T = YS, (1)

whereT is stress,Y is Young’s modulus, andSis the strain due to the beam displacementU given byS= ∂U
∂z .

The force acting on a small beam segment∆z is

F = A(T(z+∆z)−T(z)) = A
T(z+∆z)−T(z)

∆z
∆z≈ A

∂T
∂z

∆z, (2)

whereA is the beam cross sectional area. On the other hand, Newton’s equation for the segment is

F = m
∂2U
∂t2 = ρA

∂2U
∂t2 ∆z. (3)

1Radio Frequency Microelectromechanical Systems
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Combining Equations (1), (2), and (3) gives

ρA
∂2U
∂t2 = YA

∂2U
∂z2 . (4)

This is a wave equation for a longitudinal motion in a beam. At this point we make a wild guess for the
solution and try2

U = (aejkz+be− jkz)ejω0t (5)

Turns out that this just happens to be the solution provided that

ρω2
0 = Yk2. (6)

The boundary conditions are given by the requirement that there is no stress and no stress gradient on the
free end surfaces. Therefore we have

T = Y ∂U
∂z = 0 and

∂T
∂z = 0

(7)

at the beam ends (z=±L/2). Thus, the solution is

U = sin(kz)ejω0t , (8)

wherek = π/L 3.

Lumped model for forced vibrations
Lets now complicate the situation a bit by adding damping and excitation to the model. Equation (4) now
becomes

ρA
∂2U
∂t2 +bA

∂U
∂t
−YA

∂2U
∂z2 = F(z, t), (9)

whereb is the damping andF(z, t) is the time harmonic electrostatic force at the beam ends. We’ll come
back to this a bit later but for now we’ll write it simply as

F(z, t) =
f (t)
2

(δ(z−L/2)−δ(z+L/2)), (10)

whereδ is the delta-function. Now it would be really nice if we could somehow use the hard work done in
the previous section to obtain a solution to Equation (9). Equation (8) does not work right away but we’ll
take it is as a starting point and assume that themode shaperemains the same and only the time behavior
changes. We thus write the solution to Equation (4) as

U(z, t) = x(t)sinkz, (11)

wherex is the motion of the beam tip. Substituting Equation (11) to (9) leads to

ρA
∂2x
∂t2 sinkz+bA

∂x
∂t

sinkz+YAk2xsinkz= F(z, t). (12)

2A more systematic way would have been to try the separation of variables withU(z, t) = Γ(z)Θ(t).
3Ok, there really is infinite number of solutions. We just chose the first one (the one with the lowestk).
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Next we’ll multiply Equation (12) with the mode shape sinkzand integrate over the beam length. Noting
that

∫ L/2
−L/2sin2kzdz= L/2 and that

∫ L
−L F(z, t)sinkzdz= f (t), this leads to

ρAL
2

∂2x
∂t2 +

bAL
2

∂x
∂t

+
YAk2L

2
x = f (t). (13)

Recognizing the effective mass, damping coefficient, and the spring constant as

M = ρAL/2
γ = bAL/2
K = YAk2L/2 = π2YA/2L,

(14)

leads to familiar equation for forced vibrations of damped resonator given by

M
∂2x
∂t2 + γ

∂x
∂t

+Kx = f (t). (15)

Since, we know the solution to Equation (15), we stop here.

Capacitive excitation
To actuate our beam, we use electrostatic force. This requires a large dc-voltageUdc over the narrow gap
between the beam end and the electrode superposed by an ac-voltagev(t) at the actuation frequencyf . The
energy stored in the parallel plate capacitorC formed by the beam end and the electrode is

E =
1
2

Cu2 =
1
2

C
(
u2

dc+2uacudc+u2
ac

)
, (16)

Thus, we have force at three frequencies: a dc-force, force at excitation frequencyf due to cross term
2uacudc, and force at twice the excitation frequency due to square termu2

ac. The last term is assumed small
so we’ll ignore it. We’ll also forget about the dc-term as we are trying to model a resonator. This implies
that the model is valid near the resonance if the quality factor is high.

The plate capacitance is

C = ε
Ael

d−x
, (17)

whereε is the permitivity of free space,Ael is the electrode area,d is the initial electrode gap, andx is again
the movement of the beam tip. The force is obtained from

f =
∂E
∂x

=
1
2

u2 ∂C
∂x

= u2ε
Ael

2(d−x)2 . (18)

Equation (18) is complicated as 1/(d− x)2 term is nonlinear. Since we do not like complications, we’ll
assume that thatx << d to linearize Equation (18). Putting all the approximations together (u2 ≈ 2uacudc

andx << d), we get

f = uacudcε
Ael

d2 = ηuac, (19)

where we have defined a new variable, theelectromechanical transduction factorη = udcεAel
d2 .
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Resonator current
The current through the resonator is

i =
∂Cu
∂t

= C
∂u
∂t

+u
∂C
∂t

. (20)

With the approximations made in the previous section, Equation (20) becomes

i = C0
∂uac

∂t
+η

∂x
∂t

= iac+ imot. (21)

We recognize the first term as the normal ac-current through capacitor and second term ismotional current
imot = η ∂x

∂t due to time-varying capacitance.

Electrical equivalent circuit
We are now ready to develop an equivalent circuit for our beam resonator. We start by substitutingv = ∂x

∂t =
imot/η into Equation (15) giving

M
η

∂imot

∂t
+

γ
η

imot+
K
η

∫
imotdt = f (t). (22)

Next, remembering thatf = ηuac from Equation (19) we write Equation (22) as

M
η2

∂imot

∂t
+

γ
η2 imot+

K
η2

∫
imotdt = uac. (23)

By defining motional resistance, motional capacitance, and motional inductance as

Rm = γ/η2 =
√

KM/Qη2,
Cm = η2/K, and
Lm = M/η2

(24)

Equation (23) becomes

Lm
∂imot

∂t
+Rmimot+

1
Cm

∫
imotdt = uac. (25)

This is a series RLC-circuit that relates motional current to actuation voltage. The whole beam resonator
can be represented by the electrical equivalent circuit is shown in Figure2. The motional arm is represented
by the series RLC-network and the capacitanceC0 represents the non-motional current path.

General electrical equivalent representation
We have shown that our beam resonator can, quite naturally in fact, be represented by a series RLC resonator.
This, however, is not the only possible representation and may not even be the best depending on the analysis
and application. In this section a more general approach is given and two analogies, voltage and current, are
derived.
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Figure 2. Electrical equivalent circuit for microresonator.

Current analogue
Writing Equation (15) in terms of velocityv gives

M
∂v
∂t

+ γv+K
∫

vdt = f . (26)

The current analogue is obtained by setting

v = ivel and
f = uf orce

(27)

The electrical equivalent is then

Lm
∂ivel

∂t
+Rmivel +

1
Cm

∫
iveldt = uf orce, (28)

where
Rm = γ,
Cm = 1/K, and
Lm = M.

(29)

Again this is series LRC resonator. For a complete equivalent we need to the relate the mechanical current
and voltage to real current and voltage. In the case of capacitive coupling, the relationship is

icirc = ηivel and
ucirc = uf orce/η.

(30)

Equation (30) is a transformer with ratio ofη : 1. The whole circuit is shown in Figure3.

Voltage analogue
The voltage analogue is obtained from Equation (26) by setting

v = uvel and
f = i f orce

(31)
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Figure 3. Current analogue for a mechanical resonator (v= ivel and f = uf orce).

The electrical equivalent is then

Cm
∂uvel

∂t
+1/Rmuvel +

1
Lm

∫
uveldt = i f orce, (32)

where
Rm = 1/γ,
Cm = M, and
Lm = 1/K.

(33)

This is a parallel LRC resonator. Assuming again capacitive coupling, the relationship between mechanical
and real current and voltages is given by

icirc = ηuvel and
ucirc = i f orce/η.

(34)

Equation (34) is a gyrator – a circuit element that is readily available in simulators but requires active
elements for hardware implementations. The whole circuit is shown in Figure4.
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Figure 4. Voltage analogue for a mechanical resonator (v= uvel and f = i f orce).

References

[1] T. Mattila, J. Kiiham̈aki, T. Lamminm̈aki, O. Jaakkola, P. Rantakari, A. Oja, H. Seppä, H. Kattelus, and
I. Tittonen, “A 12 MHz micromechanical bulk acoustic mode oscillator” Sensors and Actuators A, Vol.
101, no. 1-2, pp. 1-9, Sep. 2002.

Copyright Ville Kaajakari 6


