
MEMS Tutorial:
Nonlinearity in Micromechanical Resonators

In this tutorial, we cover the effect of nonlinear spring forces on (micro)resonators. The motivation
of analysis is: i. to understand the nonlinear effects observed with real resonators and ii. to estimate the
maximum vibration amplitude where vibrations are almost linear. Knowing the range for linear vibrations
sets the dynamic range for resonators. On the lower end, the usable range is limited by intrinsic noise in
the MEMS system. The upper end is limited by the resonator power handling capacity which, as we’ll see
shortly, is limited by nonlinear effects. The analysis in this tutorial follows closely to Landau [2] but the
presentation has been slightly modernized.

Preliminaries
Before going into the analysis of nonlinear resonators, it is useful to review the familiar harmonic resonator
shown in Figure 1. The equation of motion for a mass-spring-dash pot is

m
∂2x
∂t2 + γ

∂x
∂t

+ kx = Fω cosωt, (1)

where x is the motion of the mass m, γ is the damping coefficient, k is the spring constant, and Fω is the
magnitude of the forcing term at frequency ω. It is helpful to define the resonant frequency ω0 =

√
k/m and

the quality factor Q = ω0m/γ. Solving Equation (1) for the amplitude of vibrations gives

|X |= Fω/m√
(ω2−ω2

0)2 +(ωω0/Q)2
. (2)

Figure 1 sketches the resonator frequency response given by Equation (2). As the focus of this tutorial is on
resonators, we’ll concentrate on the response near the resonance frequency.

m

k γ

k
FX ω=

k
QFX ω=

low frequency 
response

resonance 
response

Fω
ωω0

X

Figure 1. Harmonic resonator and its frequency response.
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Nonlinear spring forces
In general, the nonlinear spring force can be written as

F =−kx− k1x2− k2x3 +O(x4), (3)

where k is the normal linear spring constant, k1 and k2 are the first and second order corrections, respectively,
and x is the spring displacement. With the nonlinear spring constant, the equation of motion for the mass-
spring-dash pot resonator becomes

m
∂2x
∂t2 + γ

∂x
∂t

+ kx+ k1x2 + k2x3 = Fω cosωt. (4)

Equation (4) is solved in two parts: First, in the next section, the unforced and undamped vibrations are
analyzed. Next, the obtained solution is used to approximate forced vibrations.

Unforced vibrations
Setting γ = 0 and Fω = 0 in Equation 4, we obtain

m
∂2x
∂t2 + kx+ k1x2 + k2x3 = 0. (5)

From physics, we expect the unforced, undamped harmonic oscillator to oscillate infinitely with constant
amplitude at the resonance frequency ω0. The nonlinear terms will change the oscillation frequency to ω′0.
Moreover, the oscillation frequency ω′0 will depend on oscillation amplitude due to k1x2 and k2x3 terms in
Equation (5). To obtain this relationship we carry out perturbation analysis around the linear oscillation
frequency ω0. After all we are interested in almost linear systems! Dividing by m and making the change of
variables in Equation (5) as

k1 = εαm
k2 = ε2βm
ω′0t = τ

(6)

gives

ω
′2
0

∂2x
∂τ2 +ω

2
0x+ εαx2 + ε

2
βx3 = 0. (7)

Notice that in Equation (6) the first-order correction to spring constant k1 is proportional to ε while the second-
order correction k2 is proportional to ε2. This approach provides a convenient way to group the perturbation
terms by their order. Next, we substitute ω′0 = ω0 + εω1 + ε2ω2 and x = x0 + εx1 + ε2x2 to Equation (7) and
group the terms in powers of ε:

ω2
0

∂2x0
∂τ2 +ω2

0x0

+ε

[
ω2

0
∂2x1
∂τ2 +ω2

0x1 +αx2
0 +2ω0ω1

∂2x0
∂τ2

]
+ε2

[
ω2

0
∂2x2
∂τ2 +ω2

0x2 +2αx0x1 +βx3
0 +(ω2

1 +2ω0ω2)
∂2x0
∂τ2 +2ω0ω2

∂2x1
∂τ2

]
+O(ε3) = 0.

(8)

For Equation (8) to be satisfied for ε 6= 0, the following Equations must be satisfied:

ω
2
0

∂2x0

∂τ2 +ω
2
0x0 = 0, (9)
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ω
2
0

∂2x1

∂τ2 +ω
2
0x1 +αx2

0 +2ω0ω1
∂2x0

∂τ2 = 0, (10)

and

ω
2
0

∂2x2

∂τ2 +ω
2
0x2 +2αx0x1 +βx3

0 +(ω2
1 +2ω0ω2)

∂2x0

∂τ2 +2ω0ω2
∂2x1

∂τ2 = 0. (11)

Equation (9) is just the harmonic resonator and has the solution

x0 = X0 cosτ. (12)

Substituting Equation (12) to (10) gives

ω
2
0

∂2x1

∂τ2 +ω
2
0x1 =−1

2
αX2

0 (1+ cos2τ)+2ω0ω1X0 cosτ. (13)

The resonant term1 2ω0ω1X0 cosτ on the right side of Equation (13) would result in x1 growing infinitely.
This is physically not possible as no energy is pumped into the resonator system. Thus, we require the
resonant term to be zero leading to ω1 = 0. Solving Equation (13) then leads to

x1 =− 3α

6ω2
0

X2
0 +

α

6ω2
0

X2
0 cos2τ. (14)

We thus have two additional frequency components due to the first-order corrections: a dc-term and a higher
harmonic at twice the oscillation frequency. Substituting Equations (12) and (14) to (11) gives

ω
2
0

∂2x2

∂τ2 +ω
2
0x2 =−

[
−5α2

6ω2
0

X3
0 +

3β

4
X3

0 −2ω0ω2X0

]
cosτ−

[
α2

6ω2
0

X3
0 +

β

4
X3

0

]
cos3τ (15)

We again require that the resonant term is zero giving

ω2 =
[
− 5α2

12ω3
0

+
3β

8ω0

]
X2

0 . (16)

Solving Equation (15) then leads to

x2 =
[

α2

24ω4
0

+
β

16ω2
0

]
X3

0 cosτ+
[

α2

48ω4
0

+
β

32ω2
0

]
X3

0 cos3τ. (17)

Due to the second-order correction, we again have two additional components to motion: an additional term
at oscillation frequency and a term at three times the oscillation frequency. The additional term at oscillation
frequency is a finger print of odd-order nonlinearity that is very detrimental in communication systems as it
causes aliasing of noise and interference to signal band.

To summarize this section, the nonlinear spring constant change the resonance frequency of the resonator
as

ω
′
0 = ω0 + ε

2
ω2 = ω0 +κX2

0 , (18)

where

κ =
3k2

8k
ω0−

5k2
1

12k2 ω0. (19)

Equation (18) will be used in the next section to analyze forced vibrations of damped resonator.
1The resonant excitation terms are sometimes referred to as the secular terms.
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Nonlinear forced vibrations
As we saw in the previous section, the main effect nonlinear springs were to change the resonant frequency
of the resonator. Therefore, to analyze forced vibrations, make use of Equation (18) substitute ω0 → ω′0 to
Equation (1). The time harmonic vibration amplitude near the resonance is then given by

X0 =
Fω/m√

(ω2−ω′20 )2 +(ωω′0/Q)2
, (20)

where ω′0 = ω0 + κX2
0 from the previous section. Equations (18), (19) and (20) show that due to a positive

or negative k1, the peak-frequency given by ω = ω′0 shifts to a lower frequency with an increasing vibration
amplitude X0 as illustrated in Figure 2. Similarly, a negative k2 results in the peak-frequency shifting to a
lower frequency while a positive k2 results in a higher peak-frequency.
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Figure 2. Simulated (dotted lines) and analytical (solid lines) resonator amplitude-frequency response
curves around the resonance frequency. Depending on the spring constant, the peak-frequency can shift to
either higher or lower frequency. At large vibration amplitudes the response shows hysteresis.

A useful measure of the maximum vibration amplitude is obtained by calculating the bifurcation point
xb shown in Figure 3. At higher excitation levels, the amplitude-frequency relationship is no longer a single
valued function and shows hysteresis. Thus, the maximum vibration amplitude before hysteresis xc can be
used to estimate the limit for linear operation.

To obtain an analytical estimate for the bifurcation we write ∆ω = ω−ω0 and make use of the approx-
imations (ω0 + ∆ω)2−ω′20 = (ω0 + ∆ω + ω′0)(ω0 + ∆ω−ω′0) ≈ 2ω0(∆ω−κX2

0 ) and (ω0 + ∆ω)ω′0 ≈ ω2
0 to

write Equation (20) as

X2
0 =

F2/m2

4ω2
0

[
(∆ω0−κX2

0 )2 +ω2
0/4Q2

] (21)

or
X2

0 4ω
2
0
[
((∆ω0−κX2

0 )2 +ω
2
0/4Q2] = F2/m2. (22)

As Figure 3 indicates, at bifurcation point the slope ∂X0/∂∆ω = ∞. Deriving Equation (22), solving for
∂X0/∂∆ω, and requiring that denumerator is zero (to give ∂X0/∂∆ω = ∞) leads to

X2
0 =

4Q2∆ωκ±
√

4Q4∆ω2κ2−3Q2κ2ω2
0

6Q2κ2 . (23)
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Figure 3. At bifurcation point, the slope of the amplitude-frequency curve becomes infinite. After bifurcation,
the amplitude-frequency curve has unstable region (dotted line) resulting in frequency hysteresis. Notice also
that after bifurcation, the amplitude-frequency curve is no longer single valued function.

For Equation (23) to be the bifurcation point, it has to be single valued. Requiring that 4Q4∆ω2κ2 −
3Q2κ2ω2

0 = 0 gives

∆ω =±
√

3ω0

2Q
(24)

at bifurcation, where the positive and negative sign are for the positive and negative κ, respectively. Substi-
tuting back to (20) gives

xb =

√
ω0√
3Q|κ|

(25)

for the bifurcation point.
As indicated in Figure 3, the critical vibration amplitude (or the greatest vibration amplitude) is slightly

higher than the vibration amplitude at the bifurcation point. It is obtained by substituting Equations (24)
and (25) to Equation (20) and solving for the force. The amplitude of vibrations at resonance due to this force
is

xc =

√
4ω0

3
√

3Q|κ|
. (26)

As Equation (26) shows, increasing the quality factor lowers the critical vibration amplitude xc as the res-
onator is made more susceptible to nonlinearities.

Implications
As we have seen, the maximum linear vibration amplitude is limited by nonlinearity and the nonlinear effects
therefore set the upper limit to the resonator dynamic range (the lower limit being set by noise). The energy
stored in the resonator at the critical vibration amplitude xc is

Ec =
1
2

k0x2
c (27)

and the drive level defined as power dissipated in the resonator is

Pc =
ω0Ec

Q
. (28)
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Equation (28) also gives the maximum output power that can be obtained from the resonator 2

Clamped-clamped beam example
To demonstrate the results of this tutorial, we’ll consider the clamped-clamped beam resonator shown in Fig-
ure 4. As is typical in MEMS, the spring forces have both mechanical and electrical origin. We therefore
write the spring constant as k = km +ke, k1 = km1 +ke1, and k1 = km2 +ke2 where m and e refer to mechanical
and electrical origin. The mechanical spring constant is obtained from the large deformation analysis. Typ-
ically, finite element simulations are used but for tutorial purposes, we use the first-order approximation for
the spring constant given by

km1 = 0
km2 = km√

2w2
(29)

As Equation (29) indicates, the restoring force increases with displacement. This is analogous to a string
anchored from both ends: increasing the spring tension increases the restoring force. Similarly, as the beam
is displaced, it goes into tension giving rise to additional restoring force.
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Figure 4. Clamped-clamped beam example.

The electrical nonlinearity arises from the inverse relationship between displacement and parallel plate
capacitance. The spring constants are obtained as Taylor series expansion of the electrostatic force giving

F =
U2

dc
2

∂C
∂x

=
U2

dcC0

2d

(
1+

2
d

x+
3
d2 x2 +

4
d3 x3 +O(x4)

)
, (30)

where C0 is the initial gap capacitance. The first term is the dc-force term and the spring constant is recognized
from the higher order terms as

ke =−U2
dcC0
d2

ke1 = 3
2d ke

ke2 = 2
d2 ke

(31)

Notice that the linear electrostatic spring is negative thus lowering the resonator resonanace frequency.
Figure 5 shows the analytical and simulated responses at different bias voltages. At low voltages, the

mechanical spring constant dominates and the resonant peak shifts to a higher frequency. At higher bias
voltages, the capacitive nonlinearity dominates, and the peak frequency tilts towards lower frequencies3. Also
notice that the resonance frequency too changes to a lower frequency with increasing bias voltage. A keen

2Remember: for the optimal power matching, the source and load resistances are equal and same power is dissipated in the source
and load.

3To first order, we can even compensate the mechanical nonlinearity with capacitive nonlinearity!
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eye may notice that that in case of capacitive nonlinearity, there is small deviation between the simulated
and theoretical curves. This is due to fact that we have kept terms only to third-order in Equation (30).
Keeping terms to O(x5) would accurately reproduce the capacitive nonlinearity to hysteresis limit4. However,
Equations (25) and (26) still give a reasonably good order-of-magnitude estimation of the maximum vibration
amplitude.
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Figure 5. Simulated (dotted lines) and analytical (solid lines) responses for the beam example.
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